Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt UCLN(3n + 1 ; 5n + 2) = d
3n + 1 chia hết cho d => 15n + 5 chia hết cho d
5n + 2 chia hết cho d => 15 n + 4 chia hết cho d
Mà UCLN(15n + 4 ; 15n + 5) = 1 => d = 1
Vậy ..............................................
Gọi UCLN(3n+2,5n+3) la d
=>3n+2 chia hết cho d=>15n+10 chia hết cho d
=>5n+3 chia hết cho d=>15n+9 chia hết cho d
=>(15n+10)-(15n+9) chia hết cho d
=>15n+10-15n-9 chia hết cho d
=>1 chia hết cho d
=>d=1
Vậy 3n+2 và 5n+3 là 2 số nguyên tố cùng nhau
Gọi UCLN(3n+2,5n+3) la d
=>3n+2 chia hết cho d=>15n+10 chia hết cho d
=>5n+3 chia hết cho d=>15n+9 chia hết cho d
=>(15n+10)-(15n+9) chia hết cho d
=>15n+10-15n-9 chia hết cho d
=>1 chia hết cho d
=>d=1
Vậy 3n+2 và 5n+3 là 2 số nguyên tố cùng nhau
Gọi ƯCLN(3n + 1, 5n + 4) = d (d thuộc N*, d khác 1)
Ta có:
3n + 1 chia hết cho d => 5(3n + 1) chia hết cho d => 15n + 5 chia hết cho d
5n + 4 chia hết cho d => 3(5n + 4) chia hết cho d => 15n + 12 chia hết cho d
=> (15n + 12) - (15n + 5) chia hết cho d
=> 7 chia hết cho d => d \(\in\) Ư(7) = {-1;1;-7;7}
Mà d thuộc N*
=> d \(\in\){1;7}
Mà d khác 1
=> d = 7
vậy ƯCLN(3n + 1, 5n + 4) = 7
Gọi d là ƯCLN(3n+1,5n+4)
Ta có:3n+1 chia hết cho d=>5*(3n+1)chia hết cho d
5n+4 chia hết cho d=>3*(5n+4)chia hết cho d
=>3*(5n+4)- 5*(3n+1) chia hết cho d
hay 15n+12-15n+5 chia hết cho d
=>7 chia hết cho d
=>d thuộc Ư(7)
=>d={1,7}
Vì 3n+1 và 5n+4 ko phải là 2 số nguyên tố cùng nhau
Vậy ƯCLN(3n+1,5n+4)=7
a) Gọi UCLN \(3n+7\)và \(5n+12\)là \(d\)
\(\Rightarrow\left(3n+7\right)⋮d\)và \(\left(5n+12\right)⋮d\)
Xét 2 biểu thức :
\(\Rightarrow\left(3n+7\right).5⋮d\Rightarrow15n+35⋮d\)
\(\Rightarrow\left(5n+12\right).3⋮d\Rightarrow15n+36⋮d\)
\(\Rightarrow\left(15n+37-15n-36\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\Rightarrow3n+7;5n+12\)nguyên tố cùng nhau.
Đặt d là ƯC của 3n+2 và 5n+3 => 3n+2 và 5n+3 cùng chia hết cho d
=> 5(3n+2)=15n+10 chia hết cho d và 3(5n+3)=15n+9 chia hết cho d nên
5(3n+2)-3(5n+3)=1 cũng chia hết cho d => d là ước của 1 => d=1
=> 3n+2 và 5n+3 là hai số nguyên tố cùng nhau
Gọi d làƯC của 3n+4 vàng n+1
Ta có: 3n+4-1n+1 chia hết cho d
3n+4-3(1n+1) chia hết cho d
3n+4-3n+3 chia hết cho d
1 chia hết cho d
Suy ra d=1
Vậy 3n+4 và n+1 là 2 số nguyen tố cùng nhau.
Gọi d là ƯC(3n+5;3n+7)
Nhận thấy rằng 3n+5 và 3n+7 lẻ nén d lẻ
Suy ra 3n+7-3n+5 chia hết cho d
2 chia hết ho d mà d lẻ nên d=1
Vậy 3n+5 và 3n+7 là 2 số nguyen tố cùng nhau.
Giả sử 5n+2 và 3n+1 chia hết cho d
=> 3(5n+1) = 15n + 6 chia hết cho d
và 5(3n+1) = 15n +5 chia hết cho d
ta có: 15n+6 - (15n+5) = 1chia hết cho d
suy ra d=1
vậy 5n+2 và 3n+1 nguyên tố cùng nhau