K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2021

Gọi ƯCLN(2n+1 ; 3n+2)=d

Ta có : 2.(3n+2)-3.(2n+1) chia hết cho d

=> 6n+4-6n-3 chia hết cho d

=> 1 chia hết cho d

Suy ra ƯCLN(2n+1 ; 3n+2)=1

Vậy 2n+1 và 3n+2 là hai số nguyên tố cùng nhau

19 tháng 12 2017

sai đề nhé bạn:

Mình sửa giúp cho nhé: chứng tỏ 3n + 3 và 3n + 5 là 2 số nguyên tố cùng nhau.

Giải:

Ta đặt ƯCLN (3n+5;2n+3) = d =>3n+5 chia hết cho d và 2n+3 chia hết cho d

vì 3n+5 chia hết cho d nên 2(3n+5) chia hết cho d hay 6n+10 chia hết cho d

vì 2n+3 chia hết cho d nên 3(2n+3) chia hết cho d hay 6n+9 chia hết cho d nên

(6n+10) - (6n+9) chia hết cho d hay 

1 chia hết cho d hay d=1

Vậy 3n+5 và 2n+3 là hai số nguyên tố cùng nhau . 

4 tháng 12 2016

Gọi d là ƯCLN(2n+1, 3n+2)

Ta có: 2n+1 chia hết cho d, 3n+2 chia hết cho d

=> 2(3n+2) - 3(2n+1) chia hết cho d

=> 1 chia hết cho d

=> d = 1

Vậy 2n+1 và 3n+2 là 2 số nguyên tố cùng nhau

2 tháng 12 2017

Ta có 2n+1 =6n+3

3n+2=6n+4

gọi d là ước của 6n+3 và 6n+4

Ta có (6n+3)-(6n+4) chia hết cho d

=> 1 chia hết cho d

=> d=1

vậy 2n+1 vafn+2 là 2 số nguyên tố cùng nhau

22 tháng 12 2021

Gọi d là ước chung của 3n+2 và 2n+1 nên

\(3n+2⋮d\Rightarrow2\left(3n+2\right)=6n+4⋮d\)

\(2n+1⋮d\Rightarrow3\left(2n+1\right)=6n+3⋮d\)

\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)=1⋮d\Rightarrow d=1\)

=> 3n+2 và 2n+1 nguyên tố cùng nhau với mọi n

22 tháng 12 2021

Á à dám lên đây để hỏi bài, sao giống tôi thế :3

7 tháng 12 2019

Gọi d là ƯCLN(2n+3;3n+4)

Ta có 

\(\hept{\begin{cases}2n+3⋮d\\3n+4⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3.\left(2n+3\right)⋮d\\2.\left(3n+4\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}6n+9⋮d\\6n+8⋮d\end{cases}\Rightarrow}\left(6n+9\right)-\left(6n+8\right)⋮d\Rightarrow1⋮d\Rightarrow d=1}\)

Vì 2 số đã cho có ƯCLN là 1 nên hai số đã cho nguyên tố cùng nhau (đpcm)

19 tháng 7 2016

Gọi UCLN (2n+5;3n+7) là d 

Ta có : 2n+5 chia hết cho d => 3(2n+5) chia hết cho d => 6n +15 chia hết cho d 

=> 3n+7 chia hết cho d => 2(3n+7) chia hết cho d => 6n+14 chia hết cho d 

Ta có : (6n+15)-(6n+14)=1 chia hết cho d => d=1

Vậy 2n+5 và 3n+7 là 2 số nguyên tố cùng nhau

15 tháng 12 2016

Cho 10 điểm phân biệt trong đó có 3 điem thẳng hàng.Hỏi có bao nhiêu đường thẳng phân biệt được tạo thành đi qua 2 điem trong số các điểm ở trên

(3x+22):8+10=12

5-|3-x|=3

30 tháng 12 2021

\(\Leftrightarrow\left\{{}\begin{matrix}6n+3⋮a\\6n+2⋮a\end{matrix}\right.\Leftrightarrow a=1\)

Vậy: 2n+1 và 3n+1 là hai số nguyên tố cùng nhau

21 tháng 11 2018

\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)

\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)

Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3

Giả sử: 2n+1 chia hết cho 3

=> 2n+1-3 chia hết cho 3

=> 2n-2 chia hết cho 3

=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3

Giả sử: 7n+2 chia hết cho 3

=> 7n+2-9 chia hết cho 3

=>.........

Vậy với n khác 3k+1;3k+2 thì thỏa mãn

21 tháng 11 2018

MK nhầm chỉ khác 3k+1 nha bỏ đoạn dưới

14 tháng 11 2021

em ko biết là em đúng hay sai chị thông cảm nhéundefined