Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử 2 dường thẳng xx' và yy' cắt nhau tại O
Kẻ Ot là tia fg góc xOy
và Ot' là tia fg góc x'Oy'. Ta phải chứng minh Ot và Ot' cùng nằm trên 1 đường thẳng hay tOt'=180o
tOt'=tOx+xOt' (tia Ox nằm giữa 2 tia Ot,Ot')
mà tOx=x'Ot' (cùng =1/2 hai góc đối đỉnh)
nên tOt'=x'Ot'+t'Ox=xOx'=180o (tia Ot' nằm giữa 2 tia Ox,Ox')
vậy Ot và Ot'là 2 tia đối nhau
x x' y y' O t r'
Giả sử: Vẽ hai đường thẳng xx' và b cắt nhau tại xx'.
Kẻ Ot là tia phân giác \(\widehat{xx'}\)
Và tia Ot' là tia phân giác \(\widehat{yy'}\)
\(\Rightarrow Ox\) nằm giữa \(Ot,Oy\)
Như vậy áp dụng tính chất có:
\(\widehat{tOt'}=\widehat{tOx}+\widehat{xOt'}\)
Mà: \(\widehat{tOx}=\widehat{x'Ot'}\) (\(=\frac{1}{2}\) của hai góc đối đỉnh)
Lại có: Ot' nẵm giữa hai tia Ox và Ox'
\(\widehat{tOt'}=\widehat{x'Ot'}+\widehat{t'Ox}=\widehat{xOx'}=180^o\) (hai tia đối tạo thành góc có số đó 180 độ)
Vậy: Ot và Ot' đối nhau (đpcm)
xét các tia x'ox và y'oy, có hai góc đối đỉnh là xoy và x'oy'
gọi ot và ot' là hai tia phân giác tương ứng
Thấy: góc xoy = góc x'oy'
=> góc yot = góc y'ot'
ta có: góc xoy + góc xoy' = góc toy' + góc yot = 180o
<=> góc toy' + góc y'ot' = góc tot' = 180o
=> ot và ot' là hai tia đối nhau
Có: góc xOm và yOn đối đỉnh
Ot; Ot' lần lượt là p/g của góc xOm; yOn
Chứng minh: Ot; Ot' là 2 tia đối nhau
+) Ot là p/g của góc xOm => góc mOt = 12 .góc xOm
Ot' là p/g của góc yOn => góc nOt' = 12 . góc yOn
Mà góc xOm = góc yOn nên góc mOt = nOt'
+) Om; On là 2 tia đối nhau nên Ot nằm giữa 2 tia Om ; On
=> góc mOt + tOn = mOn = 180o
=> nOt' + tOn = 180o
=> góc tOt' = 180o => Ot; Ot; là 2 tia đối nhau
gọi 2 góc dối đỉnh lần lượt là BÂC và B'ÂC'
tia Ax là phân giác của BÂC,tia Ay là phân giác của B'ÂC'
vì B'ÂC' đối đỉnh với BÂC=>B'ÂC'=BÂC=>BÂx=C'Ây=BÂC/2
mà C' , A , B thẳng hàng và BÂx=C'Ây nên Ax thẳng hàng với Ay
mà Ax và Ay có điểm chung là A, Ax thẳng hàng với Ay nên 2 tia phân
giác củ 2 góc đối dỉnh là 2 tia đối nhau(đpcm)
Giả sử 2 dường thẳng xx' và yy' cắt nhau tại O
Kẻ Ot là tia fg góc xOy
và Ot' là tia fg góc x'Oy'. Ta phải chứng minh Ot và Ot' cùng nằm trên 1 đường thẳng hay tOt'=180o
tOt'=tOx+xOt' (tia Ox nằm giữa 2 tia Ot,Ot')
mà tOx=x'Ot' (cùng =1/2 hai góc đối đỉnh)
nên tOt'=x'Ot'+t'Ox=xOx'=180o (tia Ot' nằm giữa 2 tia Ox,Ox')
vậy Ot và Ot'là 2 tia đối nhau
: xét các tia x'ox và y'oy, có hai góc đối đỉnh là xoy và x'oy'
gọi ot và ot' là hai tia phân giác tương ứng
Thấy: góc xoy = góc x'oy'
=> góc yot = góc y'ot'
ta có: góc xoy + góc xoy' = góc toy' + góc yot = 180o
<=> góc toy' + góc y'ot' = góc tot' = 180o
=> ot và ot' là hài tia đối nhau
cho mik lik-e đi Tạ Minh Ngọc