Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
\(\sqrt{\sqrt{3}+2\sqrt{\sqrt{3}-1}}+\sqrt{\sqrt{3}-2\sqrt{\sqrt{3}-1}}\\ =\sqrt{\sqrt{3}-1+2\sqrt{\sqrt{3}-1}+1}+\sqrt{\sqrt{3}-1-2\sqrt{\sqrt{3}-1}+1}\\ =\sqrt{\left(\sqrt{\sqrt{3}-1}+1\right)^2}+\sqrt{\left(1-\sqrt{\sqrt{3}-1}\right)^2}\\ =\sqrt{\sqrt{3}-1}+1+1-\sqrt{\sqrt{3}-1}\\ =2\)
b.
\(\sqrt{x-3-2\sqrt{x-4}}-\sqrt{x-4\sqrt{x-4}}\\ =\sqrt{x-4-2\sqrt{x-4}+1}-\sqrt{x-4-4\sqrt{x-4}+4}\\ =\sqrt{\left(\sqrt{x-4}-1\right)^2}-\sqrt{\left(\sqrt{x-4}-2\right)^2}\\ =\sqrt{x-4}-1-\sqrt{x-4}+2\\ =1\left(đpcm\right)\)\
a, \((\sqrt{3}-1)^2=4-2\sqrt{3}\)
VT=\((\sqrt{3}-1)^2\)
VT=\(3-2\sqrt{3}.1+1\)
VT=\(4-2\sqrt{3}\)
=> VT=VP
vậy .........
a) VT = \(\left(\sqrt{3}-1\right)^2\) = \(\left(\sqrt{3}\right)^2-2\sqrt{3}+1^2\) = \(3-2\sqrt{3}+1=4-2\sqrt{3}\) = VP
vậy \(\left(\sqrt{3}-1\right)^2=4-2\sqrt{3}\) (đpcm)
b) VT = \(\sqrt{4-2\sqrt{3}}-\sqrt{3}\) = \(\sqrt{\left(\sqrt{3}\right)^2-2\sqrt{3}.1+1^2}-\sqrt{3}\)
= \(\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}\) = \(\left|\sqrt{3}-1\right|-\sqrt{3}\) = \(\sqrt{3}-1-\sqrt{3}=-1\) = VP
vậy \(\sqrt{4-2\sqrt{3}}-\sqrt{3}=-1\)(đpcm)
\(A=\sqrt{4+\sqrt{4+\sqrt{4}+...}}\\ \)>0
a)
\(A=\sqrt{4+A}\Leftrightarrow A^2=4+A\Leftrightarrow A^2-A-4=0\)
\(\Delta=1+16=17\)
\(A_1=\dfrac{1+\sqrt{17}}{2}< \dfrac{1+5}{2}=3\)
\(A_2=\dfrac{1-\sqrt{17}}{2}\)<0 loại
Vậy A < 3
b) Chứng minh quy nạp
(13+23+.....+n3)=(1+2+3+...+n)2=> KL
b).đặt \(A=\sqrt{1^3+2^3+3^3+...+n^3}\)
ta có hằng đẳng thức: \(x^3-x=\left(x-1\right)x\left(x+1\right)\)
\(1^3+2^3+3^3+...+n^3=1^3-1+2^3-2+3^3-3+...+n^3-n+\left(1+2+3+...+n\right)\)\(=0+1.2.3+2.3.4+...+\left(n-1\right)n\left(n+1\right)+\dfrac{n\left(n+1\right)}{2}\)(*)
Xét \(B=1.2.3+2.3.4+...+\left(n-1\right)n\left(n+1\right)\)
\(4B=1.2.3.4+2.3.4.4+...+\left(n-1\right)n\left(n+1\right).4=1.2.3.4+2.3.4.5-1.2.3.4+...+\left(n-1\right)n\left(n+1\right)\left(n+2\right)-\left(n-2\right)\left(n-1\right)n\left(n+1\right)\)
\(=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
\(\Rightarrow B=\dfrac{\left(n-1\right)n\left(n+1\right)\left(n+2\right)}{4}\)
từ (*): \(1^3+2^3+...+n^3=\dfrac{\left(n-1\right)n\left(n+1\right)\left(n+2\right)}{4}+\dfrac{n\left(n+1\right)}{2}\)
\(=\dfrac{n\left(n+1\right)}{2}\left[\dfrac{\left(n-1\right)\left(n+2\right)}{2}+1\right]=\dfrac{n\left(n+1\right)}{2}.\dfrac{n^2+n-2+2}{2}=\left[\dfrac{n\left(n+1\right)}{2}\right]^2\)
do đó \(A=\sqrt{\left[\dfrac{n\left(n+1\right)}{2}\right]^2}=\dfrac{n\left(n+1\right)}{2}=1+2+...+n\)(đpcm)
2.+ \(\left(2n+1\right)^2=4n^2+4n+1>4n^2+4n\)
\(\Rightarrow2n+1>\sqrt{4n\left(n+1\right)}=2\sqrt{n\left(n+1\right)}\)
+ \(\frac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\left(2n+1\right)\left(\sqrt{n+1}+\sqrt{n}\right)}\)
\(=\frac{\sqrt{n+1}-\sqrt{n}}{2n+1}< \frac{\sqrt{n+1}-\sqrt{n}}{2\sqrt{n\left(n+1\right)}}=\frac{1}{2}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Do đó : \(A< \frac{1}{2}\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{48}}-\frac{1}{\sqrt{49}}\right)\)
\(\Rightarrow A< \frac{1}{2}\)
1. + \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\left(n+1\right)-n}{\left(n+1\right)\sqrt{n}}=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\left(n+1\right)\sqrt{n}}\)
\(< \frac{\left(\sqrt{n+1}-\sqrt{n}\right)\cdot2\sqrt{n+1}}{\sqrt{n}\left(n+1\right)}=2\cdot\frac{n+1-\sqrt{n\left(n+1\right)}}{\left(n+1\right)\sqrt{n}}=2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Do đó : \(A< 2\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2012}}-\frac{1}{\sqrt{2013}}\right)\)
\(\Rightarrow A< 2\)
Bài 2 tạm thời chưa nghĩ ra :))
\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)^2-n^2\left(n+1\right)}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{\sqrt{n}}{n}+\frac{\sqrt{n+1}}{n+1}\)
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{100\sqrt{99}+99\sqrt{100}}\)
\(=\frac{\sqrt{1}}{1}-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{3}+...+\frac{\sqrt{99}}{99}-\frac{\sqrt{100}}{100}\)
\(=1-\frac{\sqrt{100}}{100}=\frac{9}{10}< 1\)
a) Ta có :
4 - 2\(\sqrt{3}\) = 1 - 2.1.\(\sqrt{3}\) + 3 = 1 - 2.1.\(\sqrt{3}\) + (\(\sqrt{3}\))2 = (1 - \(\sqrt{3}\))2= (\(\sqrt{3}\) - 1)2
b) Áp dụng câu a ta có:
\(\sqrt{4-2\sqrt{3}}\) - \(\sqrt{3}\) = \(\sqrt{\left(\sqrt{3}-1\right)^2}\) - \(\sqrt{3}\) = (\(\sqrt{3}\) - 1) -\(\sqrt{3}\)
= \(\sqrt{3}\) - 1 - \(\sqrt{3}\) = -1
Có \(\sqrt{4-2\sqrt{3}}-\sqrt{3}\)
\(=\sqrt{\left(\sqrt{3}\right)^2-2\cdot\sqrt{3}\cdot\sqrt{1}+\left(\sqrt{1}\right)^2}-\sqrt{3}\)
\(=\sqrt{\left(\sqrt{3}-\sqrt{1}\right)^2}-\sqrt{3}\)
\(=\sqrt{3}-\sqrt{1}-\sqrt{3}\)
\(=-\sqrt{1}=-1\)
Năm nay mình cũng vừa lên lớp 9 đó.