\(\sqrt{4-2\sqrt{3}-\sqrt{3}=-1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2017

mình viết nhầm số cuối  nha bạn = -1( đpcm)

10 tháng 6 2017

\(\sqrt{3-2\sqrt{3}+1}-\sqrt{3}=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}=\left(\sqrt{3}-1\right)-\sqrt{3}=1\left(dpcm\right)\)

1. Tính giá trị biểu thức: \(A=\sqrt{a^2+4ab^2+4b}-\sqrt{4a^2-12ab^2+9b^4}\) với \(a=\sqrt{2}\) ; \(b=1\) 2. Đặt \(M=\sqrt{57+40\sqrt{2}}\) ; \(N=\sqrt{57-40\sqrt{2}}\). Tính giá trị của các biểu thức sau: a) M-N b) \(M^3-N^3\) 3. Chứng minh: \(\left(\frac{x\sqrt{x}+3\sqrt{3}}{x-\sqrt{3x}+3}-2\sqrt{x}\right)\left(\frac{\sqrt{x}+\sqrt{3}}{3-x}\right)=1\) (với \(x\ge0\) và \(x\ne3\)) 4. Chứng minh:...
Đọc tiếp

1. Tính giá trị biểu thức: \(A=\sqrt{a^2+4ab^2+4b}-\sqrt{4a^2-12ab^2+9b^4}\) với \(a=\sqrt{2}\) ; \(b=1\)

2. Đặt \(M=\sqrt{57+40\sqrt{2}}\) ; \(N=\sqrt{57-40\sqrt{2}}\). Tính giá trị của các biểu thức sau:

a) M-N

b) \(M^3-N^3\)

3. Chứng minh: \(\left(\frac{x\sqrt{x}+3\sqrt{3}}{x-\sqrt{3x}+3}-2\sqrt{x}\right)\left(\frac{\sqrt{x}+\sqrt{3}}{3-x}\right)=1\) (với \(x\ge0\)\(x\ne3\))

4. Chứng minh: \(\frac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}.\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}=a-b\) (a > 0 ; b > 0)

5. Chứng minh: \(\sqrt{9+4\sqrt{2}}=2\sqrt{2}+1\) ; \(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=5+3\sqrt{2}\) ; \(3-2\sqrt{2}=\left(1-\sqrt{2}\right)^2\)

6. Chứng minh: \(\left(\frac{1}{2\sqrt{2}-\sqrt{7}}-\left(3\sqrt{2}+\sqrt{17}\right)\right)^2=\left(\frac{1}{2\sqrt{2}-\sqrt{17}}-\left(2\sqrt{2}-\sqrt{17}\right)\right)^2\)

7. Chứng minh đẳng thức: \(\left(\frac{3\sqrt{2}-\sqrt{6}}{\sqrt{27}-3}-\frac{\sqrt{150}}{3}\right).\frac{1}{\sqrt{6}}=-\frac{4}{3}\)

8.Chứng minh: \(\frac{2002}{\sqrt{2003}}+\frac{2003}{\sqrt{2002}}>\sqrt{2002}+\sqrt{2003}\)

9. Chứng minh rằng: \(\sqrt{2000}-2\sqrt{2001}+\sqrt{2002}< 0\)

10. \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\) ; \(\frac{7}{5}< \frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}< \frac{29}{30}\)

0
5 tháng 8 2016

ta tính VT ra xong rồi nói VT = VP

21 tháng 6 2017

a,

\(\sqrt{\sqrt{3}+2\sqrt{\sqrt{3}-1}}+\sqrt{\sqrt{3}-2\sqrt{\sqrt{3}-1}}\\ =\sqrt{\sqrt{3}-1+2\sqrt{\sqrt{3}-1}+1}+\sqrt{\sqrt{3}-1-2\sqrt{\sqrt{3}-1}+1}\\ =\sqrt{\left(\sqrt{\sqrt{3}-1}+1\right)^2}+\sqrt{\left(1-\sqrt{\sqrt{3}-1}\right)^2}\\ =\sqrt{\sqrt{3}-1}+1+1-\sqrt{\sqrt{3}-1}\\ =2\)

b.

\(\sqrt{x-3-2\sqrt{x-4}}-\sqrt{x-4\sqrt{x-4}}\\ =\sqrt{x-4-2\sqrt{x-4}+1}-\sqrt{x-4-4\sqrt{x-4}+4}\\ =\sqrt{\left(\sqrt{x-4}-1\right)^2}-\sqrt{\left(\sqrt{x-4}-2\right)^2}\\ =\sqrt{x-4}-1-\sqrt{x-4}+2\\ =1\left(đpcm\right)\)\

26 tháng 6 2017

a, \((\sqrt{3}-1)^2=4-2\sqrt{3}\)

VT=\((\sqrt{3}-1)^2\)

VT=\(3-2\sqrt{3}.1+1\)

VT=\(4-2\sqrt{3}\)

=> VT=VP

vậy .........

26 tháng 6 2017

a) VT = \(\left(\sqrt{3}-1\right)^2\) = \(\left(\sqrt{3}\right)^2-2\sqrt{3}+1^2\) = \(3-2\sqrt{3}+1=4-2\sqrt{3}\) = VP

vậy \(\left(\sqrt{3}-1\right)^2=4-2\sqrt{3}\) (đpcm)

b) VT = \(\sqrt{4-2\sqrt{3}}-\sqrt{3}\) = \(\sqrt{\left(\sqrt{3}\right)^2-2\sqrt{3}.1+1^2}-\sqrt{3}\)

= \(\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}\) = \(\left|\sqrt{3}-1\right|-\sqrt{3}\) = \(\sqrt{3}-1-\sqrt{3}=-1\) = VP

vậy \(\sqrt{4-2\sqrt{3}}-\sqrt{3}=-1\)(đpcm)

Y
13 tháng 6 2019

2.+ \(\left(2n+1\right)^2=4n^2+4n+1>4n^2+4n\)

\(\Rightarrow2n+1>\sqrt{4n\left(n+1\right)}=2\sqrt{n\left(n+1\right)}\)

+ \(\frac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\left(2n+1\right)\left(\sqrt{n+1}+\sqrt{n}\right)}\)

\(=\frac{\sqrt{n+1}-\sqrt{n}}{2n+1}< \frac{\sqrt{n+1}-\sqrt{n}}{2\sqrt{n\left(n+1\right)}}=\frac{1}{2}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

Do đó : \(A< \frac{1}{2}\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{48}}-\frac{1}{\sqrt{49}}\right)\)

\(\Rightarrow A< \frac{1}{2}\)

Y
13 tháng 6 2019

1. + \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\left(n+1\right)-n}{\left(n+1\right)\sqrt{n}}=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\left(n+1\right)\sqrt{n}}\)

\(< \frac{\left(\sqrt{n+1}-\sqrt{n}\right)\cdot2\sqrt{n+1}}{\sqrt{n}\left(n+1\right)}=2\cdot\frac{n+1-\sqrt{n\left(n+1\right)}}{\left(n+1\right)\sqrt{n}}=2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

Do đó : \(A< 2\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2012}}-\frac{1}{\sqrt{2013}}\right)\)

\(\Rightarrow A< 2\)

Bài 2 tạm thời chưa nghĩ ra :))

18 tháng 7 2019
https://i.imgur.com/4B18SXg.jpg
15 tháng 6 2017

\(A=\sqrt{4+\sqrt{4+\sqrt{4}+...}}\\ \)>0

a)

\(A=\sqrt{4+A}\Leftrightarrow A^2=4+A\Leftrightarrow A^2-A-4=0\)

\(\Delta=1+16=17\)

\(A_1=\dfrac{1+\sqrt{17}}{2}< \dfrac{1+5}{2}=3\)

\(A_2=\dfrac{1-\sqrt{17}}{2}\)<0 loại

Vậy A < 3

b) Chứng minh quy nạp

(13+23+.....+n3)=(1+2+3+...+n)2=> KL

15 tháng 6 2017

b).đặt \(A=\sqrt{1^3+2^3+3^3+...+n^3}\)

ta có hằng đẳng thức: \(x^3-x=\left(x-1\right)x\left(x+1\right)\)

\(1^3+2^3+3^3+...+n^3=1^3-1+2^3-2+3^3-3+...+n^3-n+\left(1+2+3+...+n\right)\)\(=0+1.2.3+2.3.4+...+\left(n-1\right)n\left(n+1\right)+\dfrac{n\left(n+1\right)}{2}\)(*)

Xét \(B=1.2.3+2.3.4+...+\left(n-1\right)n\left(n+1\right)\)

\(4B=1.2.3.4+2.3.4.4+...+\left(n-1\right)n\left(n+1\right).4=1.2.3.4+2.3.4.5-1.2.3.4+...+\left(n-1\right)n\left(n+1\right)\left(n+2\right)-\left(n-2\right)\left(n-1\right)n\left(n+1\right)\)

\(=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)

\(\Rightarrow B=\dfrac{\left(n-1\right)n\left(n+1\right)\left(n+2\right)}{4}\)

từ (*): \(1^3+2^3+...+n^3=\dfrac{\left(n-1\right)n\left(n+1\right)\left(n+2\right)}{4}+\dfrac{n\left(n+1\right)}{2}\)

\(=\dfrac{n\left(n+1\right)}{2}\left[\dfrac{\left(n-1\right)\left(n+2\right)}{2}+1\right]=\dfrac{n\left(n+1\right)}{2}.\dfrac{n^2+n-2+2}{2}=\left[\dfrac{n\left(n+1\right)}{2}\right]^2\)

do đó \(A=\sqrt{\left[\dfrac{n\left(n+1\right)}{2}\right]^2}=\dfrac{n\left(n+1\right)}{2}=1+2+...+n\)(đpcm)

17 tháng 7 2018

\(VT=\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)\sqrt{3-\sqrt{5}}=\dfrac{\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)\sqrt{5-2\sqrt{5}+1}}{\sqrt{2}}=\dfrac{\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)^2}{\sqrt{2}}=\dfrac{2\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}{\sqrt{2}}=\sqrt{2}.\left(9-5\right)=4\sqrt{2}=VP\)Vậy , đẳng thức được chứng minh.