Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\dfrac{1}{2^2}-\dfrac{1}{2^4}+\dfrac{1}{2^6}-......+\dfrac{1}{2^{4n-2}}-\dfrac{1}{2^{4n}}+......+\dfrac{1}{2^{2002}}-\dfrac{1}{2^{2004}}\Rightarrow4S=1-\dfrac{1}{2^2}+\dfrac{1}{2^4}-\dfrac{1}{2^6}+......-\dfrac{1}{2^{4n-2}}+\dfrac{1}{2^{4n}}+......-\dfrac{1}{2^{2002}}\Rightarrow4S+S=5S=1-\dfrac{1}{2^{2004}}< 1\Rightarrow S< 0,2\left(\text{đpcm}\right)\)
Đặt :
\(A=\dfrac{1}{2^2}-\dfrac{1}{2^4}+\dfrac{1}{2^6}-......+\dfrac{1}{2^{4n-2}}-\dfrac{1}{2^{4n}}+.........+\dfrac{1}{2^{2002}}-\dfrac{1}{2^{2004}}\)
\(\Leftrightarrow2^2A=2^2\left(\dfrac{1}{2^2}-\dfrac{1}{2^4}+\dfrac{1}{2^6}-.......+\dfrac{1}{2^{4n-2}}-\dfrac{1}{2^{4n}}+......+\dfrac{1}{2^{2002}}-\dfrac{1}{2^{2004}}\right)\)
\(\Leftrightarrow4A=1-\dfrac{1}{2^2}+\dfrac{1}{2^4}-\dfrac{1}{2^6}+.......-\dfrac{1}{2^{4n-2}}+\dfrac{1}{2^{4n}}-.......-\dfrac{1}{2^{2002}}\)
\(\Leftrightarrow4A+A=\left(1-\dfrac{1}{2^2}+\dfrac{1}{2^4}-\dfrac{1}{2^6}+.......-\dfrac{1}{2^{4n-2}}+\dfrac{1}{2^{4n}}-......-\dfrac{1}{2^{2002}}\right)+\left(\dfrac{1}{2^2}-\dfrac{1}{2^4}+......+\dfrac{1}{2^{4n-2}}-\dfrac{1}{2^{4n}}+......+\dfrac{1}{2^{2002}}-\dfrac{1}{2^{2004}}\right)\)
\(\Leftrightarrow5A=1-\dfrac{1}{2^{2004}}\)
\(\Leftrightarrow A=\left(1-\dfrac{1}{2^{2004}}\right):5\)
\(\Leftrightarrow A=\dfrac{1}{5}-\dfrac{1}{5}.\dfrac{1}{2^{2004}}< \dfrac{1}{5}=0,2\left(đpcm\right)\)
\(S=\dfrac{1}{2^2}-\dfrac{1}{2^4}+...+\dfrac{1}{2^{4n-2}}-\dfrac{1}{2^{4n}}+...+\dfrac{1}{2^{2002}}-\dfrac{1}{2^{2004}}\)
\(2^2S=2^2\left(\dfrac{1}{2^2}-\dfrac{1}{2^4}+...+\dfrac{1}{2^{4n-2}}-\dfrac{1}{2^{4n}}+...+\dfrac{1}{2^{2002}}-\dfrac{1}{2^{2004}}\right)\)
\(4S=1-\dfrac{1}{2^2}+...+\dfrac{1}{2^{4n}}+\dfrac{1}{2^{4n+2}}+...+\dfrac{1}{2^{2000}}-\dfrac{1}{2^{2002}}\)
\(4S+S=\left(1-\dfrac{1}{2^2}+...+\dfrac{1}{2^{2000}}-\dfrac{1}{2^{2002}}\right)+\left(\dfrac{1}{2^2}-\dfrac{1}{2^4}+...+\dfrac{1}{2^{2002}}-\dfrac{1}{2^{2004}}\right)\)
\(5S=1-\dfrac{1}{2^{2004}}< 1\Rightarrow S< \dfrac{1}{5}=0,2\)
Tao có: \(B=1-\dfrac{1}{2^2}-\dfrac{1}{3^2}-\dfrac{1}{4^2}-...-\dfrac{1}{2004^2}\)
\(B>1-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2003\cdot2004}\right)\)
\(B>1-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2003}-\dfrac{1}{2004}\right)\)
\(B>1-\left(1-\dfrac{1}{2004}\right)=1-1+\dfrac{1}{2004}=\dfrac{1}{2004}\left(đpcm\right)\)
Chữa lại đề.Bạn xem lại đề xem đúng chưa nhé!
\(D=\dfrac{\dfrac{1}{2003}+\dfrac{1}{2004}+\dfrac{1}{2005}}{\dfrac{5}{2003}+\dfrac{5}{2004}+\dfrac{5}{2005}}-\dfrac{\dfrac{2}{2002}+\dfrac{2}{2003}+\dfrac{2}{2004}}{\dfrac{3}{2002}+\dfrac{3}{2003}+\dfrac{3}{2004}}\)
\(D=\dfrac{1.\left(\dfrac{1}{2003}+\dfrac{1}{2004}+\dfrac{1}{2005}\right)}{5.\left(\dfrac{1}{2003}+\dfrac{1}{2004}+\dfrac{1}{2005}\right)}-\dfrac{2.\left(\dfrac{1}{2002}+\dfrac{1}{2003}+\dfrac{1}{2004}\right)}{3\left(\dfrac{1}{2002}+\dfrac{1}{2003}+\dfrac{1}{2004}\right)}\)
\(D=\dfrac{1}{5}-\dfrac{2}{3}\)
\(D=-\dfrac{7}{15}\)
Cái này học lâu rồi.Bạn xem lại xem mình làm đúng chưa nhé!
8,A=\(\dfrac{9}{10}-\left(\dfrac{1}{10\times9}+\dfrac{1}{9\times8}+\dfrac{1}{8\times7}+...+\dfrac{1}{2\times1}\right)\)
=\(\dfrac{9}{10}-\left(\dfrac{1}{10}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{8}+...+\dfrac{1}{2}-1\right)\)
=\(\dfrac{9}{10}-\left(\dfrac{1}{10}-1\right)\)
=\(\dfrac{9}{10}-\dfrac{\left(-9\right)}{10}\)
=\(\dfrac{9}{5}\)
\(A=\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{2005^2}\)
\(A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2004.2005}\)
\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2004}-\frac{1}{20055}\)
\(A< 1-\frac{1}{2005}=\frac{2004}{2005}\)
\(\Rightarrow A< \frac{2004}{2005}\left(đpcm\right)\)
Đặt M=1/2^2+1/3^2+1/4^2+...+1/2005^2
M<1/1.2+1/2.3+1/3.4+...+1/2004.2005
M<1-1/2+1/2-1/3+1/3-1/4+...+1/2004-1/2005
M<1-1/2005=2004/2005(đpcm)
a)
\(B=1-\dfrac{1}{2^2}-\dfrac{1}{3^2}-\dfrac{1}{4^2}-...........-\dfrac{1}{2004^2}\)
\(\Leftrightarrow B=1-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+..............+\dfrac{1}{2004^2}\right)\)
Đặt :
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+.............+\dfrac{1}{2004^2}\)
Ta thấy :
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
..........................
\(\dfrac{1}{2004^2}< \dfrac{1}{2003.2004}\)
\(\Leftrightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+..............+\dfrac{1}{2003.2004}\)
\(\Leftrightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+..........+\dfrac{1}{2003}-\dfrac{1}{2004}\)
\(\Leftrightarrow A< 1-\dfrac{1}{2004}\)
\(\Leftrightarrow A< \dfrac{2003}{2004}\)
\(\Leftrightarrow1-A< 1-\dfrac{2003}{2004}\)
\(\Leftrightarrow B< \dfrac{1}{2004}\left(đpcm\right)\)
b) \(S=\dfrac{1}{2^2}-\dfrac{1}{2^4}+\dfrac{1}{2^6}-........+\dfrac{1}{2^{4n-2}}-\dfrac{1}{2^{4n}}+.......+\dfrac{1}{2^{2002}}-\dfrac{1}{2^{2004}}\)
\(\Leftrightarrow2^2S=2^2\left(\dfrac{1}{2^2}-\dfrac{1}{2^4}+.....+\dfrac{1}{2^{4n-2}}-\dfrac{1}{2^{4n}}+....+\dfrac{1}{2^{2002}}-\dfrac{1}{2^{2004}}\right)\)
\(\Leftrightarrow4S=1-\dfrac{1}{2^2}+.......+\dfrac{1}{2^{4n}}-\dfrac{1}{2^{4n+2}}+.......+\dfrac{1}{2^{2000}}-\dfrac{1}{2^{2002}}\)
\(\Leftrightarrow4S+S=\left(1-\dfrac{1}{2^2}+.....+\dfrac{1}{2^{2000}}-\dfrac{1}{2^{2002}}\right)+\left(\dfrac{1}{2^2}-\dfrac{1}{2^4}+.......+\dfrac{1}{2^{2002}}-\dfrac{1}{2^{2004}}\right)\)\(\Leftrightarrow5S=1-\dfrac{1}{2^{2004}}< 1\)
\(\Leftrightarrow S< \dfrac{1}{5}=0,2\)
\(\Leftrightarrow S< 0,2\left(đpcm\right)\)
cho mik hỏi mik ko hiểu tại sao từ 1/2^4n-2 khi nhân với 2^2 lại ra đc 1/2^4n vậy? Xin hãy giải đáp giùm mik