K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2021

(x3+x2y+xy2+y3)(x-y)

=x(x3+x2y+xy2+y3)-y(x3+x2y+xy2+y3)

=x4+x3y+x2y2+xy3-x3y-x2y2+xy3+y4

= x4+y4

đề sai bạn xem lại đề

9 tháng 8 2021

(x3+x2y+xy2+y3)(x-y)

=x(x3+x2y+xy2+y3)-y(x3+x2y+xy2+y3)

=x4+x3y+x2y2+xy3-x3y-x2y2-xy3-y4

= x4-y4

31 tháng 8 2018

a)   \(\left(x-1\right)\left(x^2+x+1\right)=x\left(x^2+x+1\right)-\left(x^2+x+1\right)\)

\(=x^3+x^2+x-x^2-x-1=x^3-1\)   đpcm

b) \(x^4-y^4=\left(x^2-y^2\right)\left(x^2+y^2\right)\)

\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)=\left(x-y\right)\left[x\left(x^2+y^2\right)+y\left(x^2+y^2\right)\right]\)

\(=\left(x-y\right)\left(x^3+xy^2+x^2y+y^3\right)\) đpcm

14 tháng 8 2020

a) \(\left(x+y-z\right)^2=\left[\left(x+y\right)-z\right]^2\)

\(=\left(x+y\right)^2-2\left(x+y\right)z+z^2\)

\(=x^2+2xy+y^2-2zx-2yz+z^2\)

\(=x^2+y^2+z^2+2xy-2yz-2zx\)

b) \(\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)\)

\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4\)

\(=x^4-y^4\)

c) \(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)

\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5\)

\(=x^5+y^5\)

24 tháng 5 2017

lười thế bạn nhân phá ra là được mà

24 tháng 5 2017

a ) \(\left(x+y+z\right)^2=x^2+y^2+z^{2^{ }}+2xy+2yz+2zx\)

Biến đổi vế trái ta được :

\(\left(x+y+z\right)^2=\left(x+y+z\right)\left(x+y+z\right)\)

\(=x^2+xy+xz+xy+y^2+yz+zx+zy+z^2\)

\(=x^2+y^2+z^{2^{ }}+2xy+2yz+2zx\)

Vậy \(\left(x+y+z\right)^2=x^2+y^2+z^{2^{ }}+2xy+2yz+2zx\)

a) Ta có: \(VP=x^2+y^2+z^2-2xy+2yz-2zx\)

\(=\left(x^2-xy-xz\right)+\left(y^2-xy+yz\right)+\left(z^2-yz-zx\right)\)

\(=x\left(x-y-z\right)+y\left(y-x+z\right)+z\left(z-y-x\right)\)

\(=x\left(x-y-z\right)-y\left(x-y-z\right)-z\left(x-y-z\right)\)

\(=\left(x-y-z\right)\left(x-y-z\right)\)

\(=\left(x-y-z\right)^2=VT\)(đpcm)

b) Ta có: \(VP=x^2+y^2+z^2+2xy-2yz-2zx\)

\(=\left(x^2+xy-zx\right)+\left(y^2+xy-2yz\right)+\left(z^2-yz-zx\right)\)

\(=x\left(x+y-z\right)+y\left(x+y-z\right)+z\left(z-y-x\right)\)

\(=\left(x+y-z\right)\left(x+y\right)-z\left(x+y-z\right)\)

\(=\left(x+y-z\right)\left(x+y-z\right)\)

\(=\left(x+y-z\right)^2=VT\)(đpcm)

c) Ta có: \(VP=x^4-y^4\)

\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)

\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)

\(=\left(x-y\right)\left(x^3+xy^2+x^2y+y^3\right)=VT\)(đpcm)

d) Ta có: \(VT=\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)

\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5\)

\(=x^5+y^5=VP\)(đpcm)

4 tháng 9 2020

a) Ta có: \(\left(x+y\right)\left(x+y\right)\left(x+y\right)-3xy\left(x+y\right)\)

\(=\left(x^2+2xy+y^2\right)\left(x+y\right)-3x^2y-3xy^2\)

\(=x^3+3x^2y+3xy^2+y^3-3x^2y-3xy^2\)

\(=x^3+y^3\)

b) Ta có: \(\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=x^3+y^3-x^3+y^3\)

\(=2y^3\) (ko phải HĐT đâu nhé bn, tại mk rút gọn luôn nên nó cg samesame thế:))

13 tháng 9 2020

                  Bài làm :

 \(\text{a) }\left(x+y\right)\left(x+y\right)\left(x+y\right)-3xy\left(x+y\right)\)

\(=\left(x^2+2xy+y^2\right)\left(x+y\right)-3x^2y-3xy^2\)

\(=x^3+3x^2y+3xy^2+y^3-3x^2y-3xy^2\)

\(=x^3+y^3\)

=> Điều phải chứng minh

\(\text{b) }\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=x^3+y^3-x^3+y^3\)

\(=2y^3\) 

=> Điều phải chứng minh

7 tháng 11 2019

a) Ta có: \(\left(x-1\right)\left(x^2+x+1\right)\)

\(=x\left(x^2+x+1\right)\)\(-\left(x^2+x+1\right)\)

\(=x^3+x^2+x-x^2-x-1\)

\(=x^3-1\)

Vậy \(\left(x-1\right)\left(x^2+x+1\right)\)\(=x^3-1\)(đpcm)

b) Ta có: \(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)\)

\(=x\left(x^3+x^2y+xy^2+y^3\right)\)\(-y\left(x^3+x^2y+xy^2+y^3\right)\)

\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4\)

\(=x^4-y^4\)

Vậy\(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)\)\(=x^4-y^4\)(đpcm)

8 tháng 9 2020

        Bài làm :

 \(\text{a) }\left(x-1\right)\left(x^2+x+1\right)\)

\(=x\left(x^2+x+1\right)-\left(x^2+x+1\right)\)

\(=x^3+x^2+x-x^2-x-1\)

\(=x^3-1\)

=> Điều phải chứng minh

 \(\text{b)}\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)\)

\(=x\left(x^3+x^2y+xy^2+y^3\right)-y\left(x^3+x^2y+xy^2+y^3\right)\)

\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4\)

\(=x^4-y^4\)

=> Điều phải chứng minh

20 tháng 7 2015

 

x4 -y4 =(x3+x2y+xy2+y3)(x-y)

VP=(x3+x2y+xy2+y3)(x-y)

=x.(x3+x2y+xy2+y3)-y.(x3+x2y+xy2+y3)

=x4+x3y+x2y2+xy3-x3y-x2y2-xy3-y4

=x4-y4=VT

=> x4 -y4 =(x3+x2y+xy2+y3)(x-y)

17 tháng 7 2015

Nhiều quá 

 a, ( x+ y) = - p => ( x + y)^2 = p^2 

=> x^2 + 2xy + y^2 = p^2 

=> x^2 + 2q + y^2  =p^2 

=> x^2 + y^2 = p^2 - 2q