Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-x-1=x^2-2.x.\frac{1}{2}+\frac{1}{4}-\frac{5}{4}=\left(x-\frac{1}{2}\right)^2-\frac{5}{4}\)
sai đề
Ta có: \(x^2-x-1=x^2-2\cdot\frac{1}{2}x+\frac{1}{4}-\frac{5}{4}\)= \(\left(x-\frac{1}{2}\right)^2-\frac{5}{4}\)\(\le-\frac{5}{4}\)
=> x2-x-1 \(\le-\frac{5}{4}\) chứ ko phải nhỏ hơn 0
ta có : \(m=x^2-x+1=x^2-2.\dfrac{1}{2}.x+\left(\dfrac{1}{2}\right)^2+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\) với mọi \(x\)
\(\Rightarrow\) giá trị nhỏ nhất của \(m=x^2-x+1\) là \(\dfrac{3}{4}\) khi \(\left(x-\dfrac{1}{2}\right)^2=0\Leftrightarrow x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)
vậy giá trị nhỏ nhất của \(m=x^2-x+1\) là \(\dfrac{3}{4}\) khi \(x=\dfrac{1}{2}\)
\(\left(x+y+z\right)^2-2\left(x+y+z\right)\left(x+y\right)+\left(x+y\right)^2\)
= \(\left[\left(x+y+z\right)-\left(x+y\right)\right]^2\)
= \(z^2\)
Ta có:(x + y + z)2 - 2(x + y + z) (x + y) + (x + y)2
=[(x+y+z)-(x+y)]2=z2
a , \(x^2+2xy+y^2+1=\left(x+y\right)^2+1>0\) , \(\forall x,y\)
b , \(x^2-x+1=x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0,\forall x\)
c , \(x-1-x^2=-\left(x^2-x+1\right)\)
vì \(x^2-x+1>0\) (c.m b)
nên -(\(x^2-x+1\) ) < 0 , \(\forall x\)
Câu a :
\(x^2+2xy+y^2+1=\left(x+y\right)^2+1\ge1\) nên bất kì giá trị nào của x thì biểu thức trên luôn lớn hơn 0
Câu b :
\(x^2-x+1=x^2-x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
nên bất kì giá trị của x thì biểu thức trên luôn lớn hơn 0
Câu c :
\(x-1-x^2=-\left(x^2-x+1\right)=-\left(x^2-x+\dfrac{1}{4}+\dfrac{3}{4}\right)=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\le-\dfrac{3}{4}\)
nên bất kì giá trị nào của x thì biểu thức luôn nhỏ hơn 0
a)\(\left|2x+3\right|=x+2\)
\(\Leftrightarrow\left(\left|2x+3\right|\right)^2=\left(x+2\right)^2\)
\(\Leftrightarrow4x^2+12x+9=x^2+4x+4\)
\(\Leftrightarrow3x^2+8x+5=0\)
\(\Leftrightarrow3x^2+3x+5x+5=0\)
\(\Leftrightarrow3x\left(x+1\right)+5\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\3x+5=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{5}{3}\end{matrix}\right.\)
b)\(x^2-9x+8=0\)
\(\Leftrightarrow x^2-8x-x+8=0\)
\(\Leftrightarrow x\left(x-8\right)-\left(x-8\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-8=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=8\end{matrix}\right.\)
c)\(x^2-2\left(x-2\right)=4\)
\(\Leftrightarrow\left(x^2-4\right)-2\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)-2\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2-2\right)=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
b/ \(x^2-9x+8=0\)
Ta có: a = 1 ; b = -9 ; c = 8
\(\Delta=b^2-4ac=\left(-9\right)^2-4.1.8=49\)
\(\Rightarrow\sqrt{\Delta}=7\)
Pt có 2 nghiệm:
\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{9+7}{2.1}=8\)
\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{9-7}{2.1}=1\)
Vậy.......................................
Bài 1:
\(=2\left[\left(x-y\right)^3+3xy\left(x-y\right)\right]-3\left[\left(x-y\right)^2+2xy\right]\)
\(=2\cdot\left[2^3+3\cdot2\cdot xy\right]-3\cdot\left[2^2+2xy\right]\)
\(=2\left(8+6xy\right)-3\left(4+2xy\right)\)
\(=16+12xy-12-6xy=6xy+4\)
Bài 4:
\(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)
\(=2^3-3\cdot2\cdot\left(-6\right)=8+36=44\)
+1 hay -1
\(x^2-x-1=x^2-2x\frac{1}{2}+\frac{1}{4}+\left(-1-\frac{1}{4}\right)=\left(x-\frac{1}{2}\right)^2-\frac{5}{4}\)