Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a+b+c+d\right)\left(a-b-c+d\right)=\left(a-b+c-d\right)\left(a+b-c-d\right)\)
\(\Rightarrow\left[\left(a+d\right)+\left(b+c\right)\right]\left[\left(a+d\right)-\left(b+c\right)\right]-\left[\left(a-d\right)-\left(b-c\right)\right]\left[\left(a-d\right)+\left(b-c\right)\right]=0\)
\(\Rightarrow\left(a+d\right)^2-\left(b+c\right)^2-\left(a-d\right)^2+\left(b-c\right)^2=0\)
\(\Rightarrow a^2+d^2+2ad-b^2-c^2-2bc-a^2-d^2+2ad+b^2+c^2-2bc\)
\(\Rightarrow4ad-4bc\)
\(\Rightarrow ad=bc\Rightarrow\frac{a}{c}=\frac{b}{d}\)
1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)
\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\) (1)
áp dụng (x2 +y2 +z2)(m2+n2+p2) \(\ge\left(xm+yn+zp\right)^2\)
(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\) <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\) ( vậy (1) đúng)
dấu '=' khi a=b=c
áp dung bdt 1/x+1/y>=4/x+y ta co
\(\frac{a+c}{a+b}+\frac{b+d}{b+c}+...\)
=(a+c)(\(\frac{1}{a+b}+\frac{1}{c+d}\)) + (b+d)(\(\frac{1}{b+c}+\frac{1}{a+d}\))\(\ge\)\(\frac{4a+4c}{a+b+c+d}+\frac{4b+4d}{a+b+c+d}\)=4(dpcm)
= \(\left(a+c\right)\left(\frac{1}{a+b}+\frac{1}{c+d}\right)+\left(b+d\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)\)
Áp dụng \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\left(x,y>0\right)\)
\(\ge\left(a+c\right)\left(\frac{4}{a+b+c+d}\right)+\left(b+d\right)\left(\frac{4}{a+b+c+d}\right)\)
\(\ge\frac{4\left(a+b+c+d\right)}{a+b+c+d}\)
a/ Bình phương 2 vế:
\(\frac{a+2\sqrt{ab}+b}{4}\le\frac{a+b}{2}\)
\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)\ge0\) (luôn đúng)
Vậy BĐT được chứng minh
b/ Bình phương:
\(a^2+b^2+c^2+d^2+2\sqrt{a^2c^2+a^2d^2+b^2c^2+b^2d^2}\ge a^2+b^2+c^2+d^2+2ac+2bd\)
\(\Leftrightarrow\sqrt{a^2c^2+a^2d^2+b^2c^2+b^2d^2}\ge ac+bd\)
\(\Leftrightarrow a^2c^2+a^2d^2+b^2c^2+b^2d^2\ge a^2c^2+b^2d^2+2abcd\)
\(\Leftrightarrow a^2d^2-2abcd+b^2c^2\ge0\)
\(\Leftrightarrow\left(ad-bc\right)^2\ge0\) (luôn đúng)