Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)a(a-1) chia hêt 2
b) a(a^2-1)=(a-1)a(a+1) chia hết 3
c) a(a^4-1)=a(a^2-1)(a^2+1)=a(a^2-1)(a^2-4+5)=(a-2)(a-1)a(a+1)(a+2)+5a(a^-1) chia hết 5
đây là định lí nhỏ Phéc-ma a^n-a chia hết n
a) a2-a=a(a-1)
Vì a,a-1 là 2 số nguyên liên tiếp nên sẽ chia hết cho 2
=>đpcm
b)a3-a=a(a2-1)=a(a-1)(a+1)
Vì a,a-1,a+1 là 3 số nguyên liên tiếp nên sẽ chia hết cho 3
=>đpcm
c)a5-a=a(a4-1)=a(a2-1)(a2+1)=a(a-1)(a+1)(a2+1)=a(a-1)(a+1)(a2-4+5)=a(a-1)(a+1)(a-2)(a+2)+5a(a-1)(a+1)
Ta có
a,a-1,a+1,a-2,a+2 là 5 số nguyên liên tiếp nên chia hết cho 5
5a(a-1)(a+1) chia hết cho 5( 5 chia hết cho 5)
=>đpcm
1) a, Chứng minh a^5-a chia hết cho 5
b, Chứng minh a^7-a chia hết cho 7
Bài 2:
a) \(A=ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\)
\(=\left(a-b\right)\left(c-a\right)\left(c-b\right)\)
b) \(B=a\left(b^2-c^2\right)+b^2\left(c^2-a^2\right)+c\left(a^2-b^2\right)\)
\(=\left(b-a\right)\left(c-a\right)\left(c-b\right)\)
c) \(C=\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
p/s: từ sau bn đăng 1-2 bài thôi nhé, nhiều thế này người lm bài cx hơi bất tiện để đọc đề
còn mấy câu nữa bn đăng lại nhé
a) Ta có: \(x^2-x-6\)
\(=x^2-x-9+3\)
\(=\left(x^2-9\right)-\left(x-3\right)\)
\(=\left(x-3\right)\left(x+3\right)-\left(x-3\right)\)
\(=\left(x-3\right)\left(x+2\right)\)
b) Sử dụng phương pháp Hệ số bất định