K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2016

số số hạng của dãy là (1991-1) /2 +1=996 (số )

Vì 996 chia hết cho 3(bạn ghi kí hiệu vào )nên ta nhóm 3 số hạng liên tiêp

ta có ;3^1+3^3+3^5+3^7+......+3^1991

=(3^1+3^3+3^5)+(3^7+3^9+3^11)+.....+(3^1987+3^1989+3^1991)

=(3^1+3^3+3^5 *1)+(3^1 +3^3 +3^5 * 3^6)+....+(3^1+3^3+3^5 *3^1986)

=(3+27+243)+(3+27+ 243 * 3^6 )+...+(3+27+243 *3^1986)

=273+273 * 3^6+..... + 273* 3^1986

 =273 *(  1+ 3^6 +...+ 3^1986)

Vì 273  chia hết cho 13 Nên 273* (1+3^6+......+3^1986) chia hết cho 13

hay A chia hết cho 13

Vậy a chia hết cho 13

( bạn có thể thay nhung  chỗ VDchia hêt cho = kí hiêu đã học)

7 tháng 10 2018

gợi ý:

a) nhóm 3 số liên tiếp thành 1 cặp:

A = (3 + 33 + 35) + .....

b) nhóm 4 số liên tiếp thành 1 nhóm

A = (3 + 33 + 35 + 37) + ....

7 tháng 10 2018

ta co

A=3+33+35+...+31991

A=(3+33+35)+(37+39+311)+...+(31987+31989+31991)

A=(3+33+35)+36(3+33+35)+....+31986(3+33+35)

A=273+273.36+...+273.31986

A=273(36+31986)                    Vi\(273⋮13\)

\(\Leftrightarrow A⋮13\)

25 tháng 12 2014

\(=3+3^3+3^5+...+3^{1991}\)

\(=\left(3+3^3+3^5\right)+\left(3^7+3^9+3^{11}\right)+...+\left(3^{1989}+3^{1990}+3^{1991}\right)\)

\(=3.\left(1+3+3^2\right)+3^7.\left(1+3+3^2\right)+...+3^{1989}.\left(1+3+3^2\right)\)

\(=3.13+3^7.13+...+3^{1989}.13\)

Vì tổng có thừa số 13

Nên => chia hết cho 13

25 tháng 12 2014

bạn quỳnh cao à ! thử nhân 3 với ngoặc đơn đầu tiên xem có đúng như ban đầu ko nhé 

AH
Akai Haruma
Giáo viên
17 tháng 8 2024

Lời giải:

$C=(3+3^3+3^5)+(3^7+3^9+3^{11})+....+(3^{1987}+3^{1989}+3^{1991})$

$=3(1+3^2+3^4)+3^7(1+3^2+3^4)+...+3^{1987}(1+3^2+3^4)$

$=(1+3^2+3^4)(3+3^7+...+3^{1987})$

$=91(3+3^7+...+3^{1987})$

$=13.7(3+3^7+...+3^{1987})\vdots 13$
$C$ không chia hết cho $11$ bạn nhé.

2 tháng 11 2016

Chọn

Giải ra đầy đủ nhá

2 tháng 11 2016

Ôi tr. Ý mk mún nói là giải bài ra cho mình

3 tháng 10 2015

A={2+2^2}+{2^3+2^4}+.......+{2^59+2^60}

={2.1+2.2}+{2^3.1+2^3.2}+....+{2^59.1+2^59.2}

=2{1+2}+2^3{1+2}+...+2^59{1+2}

=2.3+2^3.3+.....+2^59.3

=3.(2+2^3+...+2^59)

vi co thua so 3 => tich do chia het cho 3

12 tháng 10 2022

A={2+2^2}+{2^3+2^4}+.......+{2^59+2^60}

={2.1+2.2}+{2^3.1+2^3.2}+....+{2^59.1+2^59.2}

=2{1+2}+2^3{1+2}+...+2^59{1+2}

=2.3+2^3.3+.....+2^59.3

=3.(2+2^3+...+2^59)

vi co thua so 3 => tich do chia het cho 3

9 tháng 10 2016

C=3 + 3^3 + 3^5 +...+ 3^1989 + 3^1991

C = ( 3 + 3^3 + 3^5 ) + ( 3^7 + 3^9 + 3^ 11 ) + ... + ( 3^1987 + 3^1989 + 3^1991 )

C = 273                   + 3^6 . ( 3 + 3^3 + 3^5 ) + ... + 3^1986 . ( 3 + 3^3 + 3^5 )

C = 273 + 3^6 . 273 + ... + 3^1986 . 273

C = 273 . ( 3^6 + ... + 3^1986 ) 

C = 21 . 13 . ( 3^6 + ... + 3^1986 ) chia hết 13  

C=3 + 3^3 + 3^5 +...+ 3^1989 + 3^1991

C = ( 3 + 3^3 + 3^5 + 3^7 ) + ( 3^9 + 3^11 + 3^ 13 + 3^15 ) +  ... + ( 3^1985 + 3^1987 + 3^1989 + 3^1991 )

C = 2460                       + 3^8 . ( 3 + 3^3 + 3^5 + 3^7 ) +  .... + 3^1984 . ( 3 + 3^3 + 3^5 + 3^7 )

C = 2460   + 3^8 . 2460 ... + 3^1984 . 2460

C = 2460 . ( 3^8 + ... + 3^1984 )

C = 60 . 41 . ( 3^8 + ... + 3^1984 ) chia hết 41

9 tháng 10 2016

C=3.1+(33.1+33.32)....(31989.1+31989.32)

C=3.1+33(1+32)......31989(1+32)        [ta có (1991-1) :2=995cặp]

C=3.1+33.10+...+31989.10

C=(3+10).(33+...31989)

C=13.(33.31989)

vậy c chia hết cho 13 còn câu b cậu làm tương tự nhé!

có thể câu a mình làm sai. mong cậu thứ lỗi


 

8 tháng 10 2016

A=3+33+35+...+31991

A=(3+33+35)+...+(31987+31989+31991)

A=3.(1+32+34)+...+31987.(1+32+34)

A=3.91+...+31987.91

A=3.7.13+...+31987.7.13

A=13.(3.7+...+31987.7) chia hết cho 13 (đcpm)