K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét 3 TH : TH1 VÀ TH2 LÀ N =1 VÀ N=0. HIỂN NHIÊN LÀ CHIA HẾT ;TH3 LÀ N LỚN HƠN HOẶC BẰNG 2 THÌ 5^N-1=(...25)-1=(...24) CHIA HẾT CHO 4 DO CÓ 2 CHỮ SỐ TẬN CÙNG CHIA HẾT CHO 4(24

11 tháng 10 2018

Ta có: 

\(5\equiv1\left(mod4\right)\)

\(\Rightarrow5^n\equiv1\left(mod4\right)\)

\(\Rightarrow5^n-1\equiv0\left(mod4\right)\)

hay:

\(5^n-1\) chia hết cho 4

13 tháng 10 2019

a,26.3+17.43=26.3+17.26=26.(3+17)=26.20 chia hết cho 10

b,Ta có A=(3+32+33)+...+(3100+3101+3102)=40+40.33+...+40.3100 =40.(1+33+...+3100) chia hết cho 4

A=(3+32)+...+(3101+3102)=13.(32+...+3100) chia hết cho 13

c,Ta có C có 10 số hạng. mà mỗi số hang của C đếu có tận cùng là 1 nên C có tận cùng là 0 chia hheets cho 5

2.Với n=2k=>n.(n+3) chia hết cho 2

với n=2k+1=>n+3 chia hết cho 2=>

n.(n+3) chia hết cho 2

=>với n thuộc N thì n.(n+3) chia hết cho 2

4 tháng 8 2016

2.

a) Ta có: \(\frac{n+6}{n}=\frac{n}{n}+\frac{6}{n}=1+\frac{6}{n}\)

Để n + 6 chia hết cho n thì \(\frac{6}{n}\) phải là số tự nhiên

\(\Rightarrow n\in\text{Ư}\left(6\right)=\left\{1;2;3;6\right\}\)

Vậy \(n\in\left\{1;2;3;6\right\}\)

c) Ta có: \(\frac{n+4}{n+1}=\frac{n+1+3}{n+1}=\frac{n+1}{n+1}+\frac{3}{n+1}=1+\frac{3}{n+1}\)

Để n + 4 chia hết cho n + 1 thì \(\frac{3}{n+1}\) phải là số tự nhiên

\(\Rightarrow n+1\in\text{Ư}\left(3\right)=\left\{1;3\right\}\)

\(\Rightarrow n\in\left\{0;2\right\}\)

Vậy \(n\in\left\{0;2\right\}\)

Đặt n = 2k , ta có                      ( đk k >= 1 do n là một số chẵn lớn hơn 4)

\(\left(2k\right)^4-4\times\left(2k\right)^3-4\times\left(2k\right)^2+16\times2k\)

\(=16k^4-32k^3-16k^2+32k\)

\(=16k^2\left(k^2-1\right)-32k\left(k^2-1\right)\)

\(=16k\times k\left(k-1\right)\left(k+1\right)-32\times k\left(k-1\right)\left(k+1\right)\)

Nhận xét \(\left(k-1\right)k\left(k+1\right)\)  là 3 số tự nhiên liên tiếp nên 

\(\left(k-1\right)k\left(k+1\right)\) chia hết cho 3

Suy ra điều cần chứng minh

23 tháng 11 2016

câu 1:

a, giả sử 2 số chẵn liên tiếp là 2k và (2k+2) ta có:

2k(2k+2) = 4k2+4k = 4k(k+1) chia hết cho 8 vì 4k chia hết cho 4, k(k+1) chia hết cho 2

b, giả sử 3 số nguyên liên tiếp là a,a+1,a+2 với mọi a thuộc Z

  • a,a+1,a+2 là 3 số nguyên liên tiếp nên tồn tại duy nhất một số chẵn hoặc có 2 số chẵn nên tích của chúng sẽ chia hết cho 2.

mặt khác vì là 3 số tự nhiên liên tiếp nên sẽ chia hết cho 3.

vậy tích của 3 số nguyên liên tiếp chia hết cho 6.

c, giả sử 5 số nguyên liên tiếp là a,a+1,a+2, a+3,a+4 với mọi a thuộc Z

  • vì là 5 số nguyên liên tiếp nên sẽ tồn tại 2 số chẵn liên tiếp nên theo ý a tích của chúng choa hết cho 8.
  • tích của 3 số nguyên liên tiếp chia hết cho 3.
  • tích của 5 số nguyên liên tiếp chia hết cho 5.

vậy tích của 5 số nguyên liên tiếp chia hết cho 120.

câu 2:

a, a3 + 11a = a[(a- 1)+12] = (a - 1)a(a+1) + 12a

  • (a - 1)a(a+1) chia hết cho 6 ( theo ý b câu 1)
  • 12a chia hết cho 6.

vậy a3 + 11a chia hết cho 6.

b, ta có a- a = a(a2 - 1) = (a-1)a(a+1) chia hết cho 3 (1) 

mn(m2-n2) = m3n - mn3 = m3n - mn + mn - mn3 = n( m- m) - m(n3 -n)

theo (1) mn(m2-n2) chia hết cho 3.

c, ta có: a(a+1)(2a+10 = a(a+1)(a -1+ a +2) = [a(a+1)(a - 1) + a(a+1)(a+2)] chia hết cho 6.( théo ý b bài 1)

31 tháng 7 2017

1) B = 31 + 32 +...+ 32010

= (3+32) + (33 + 34) + ...+ (32009 + 32010 )

= 3(1+3) + 33(1+3) + ...+ 32009(1+3)

= 3.4 + 33.4 + ...+ 32009.4

= 4(3+ 33 +...+ 32009) \(⋮\) 4 (1)

B = (3+ 32 + 33) +(34 + 35 + 36 ) +...+ (32008 + 32009 + 32010)

= 3(1+3+32) + 34(1+3+32) + ...+ 32008(1+3+32)

= 3.13 + 34.13 + ...+ 32008.13 \(⋮\) 13 (2)

Từ (1) và (2) => đpcm

b) Làm tương tự như câu a)

3)

a) Số chữ số chia hết cho 55 từ 11 đến 10001000

\(\dfrac{1000-5}{5}\)+1 =200 (số)

b)Ta thấy 1015 \(\equiv\) 1 (mod 9 ) ; 8 \(\equiv\) 8(mod 9 )

=> 1015 + 8 \(\equiv\) 0 (mod 9)

=> 1015 + 8 \(⋮\) 9

Tương tự 1015 + 8 chia hết cho 2 ( 1015 và 8 chẵn)

c) 102010 + 8 = 1000....0 (2010 chữ số 0 ) + 8 = 1000...08 (2009 chữ số 0) có tổng các chữ số : 1 + 0+ 0+...+0+8 = 9 chia hết cho 9

=> 102010 + 8 chia hết cho 9

d) Ta có : ab + ba

= 10a + b + 10b + a

= 11a + 11b

= 11(a+b) \(⋮\) 11

e) Ta có : aaa = 100a + 10a + a = (100+10+1)a = 111a = 37.3.a \(⋮\) 37

Chúc bn học tốt !