K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2019

ta có \(\sqrt{x-1+2\sqrt{x-2}}+\sqrt{x-1-2\sqrt{x-2}}\)

\(=\sqrt{\left(\sqrt{x-2}+1\right)^2}+\sqrt{\left(\sqrt{x-2}-1\right)^2}\)

\(=\left|\sqrt{x-2}+1\right|+\left|\sqrt{x-2}-1\right|\)

Vì \(x\ge2\Rightarrow\sqrt{x-2}\ge0\Rightarrow\left\{{}\begin{matrix}\sqrt{x-2}+1\ge1\\\sqrt{x-2}-1\ge-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left|\sqrt{x-2}+1\right|\ge1\\\left|\sqrt{x-2}-1\right|\ge1\end{matrix}\right.\)

\(\Leftrightarrow\left|\sqrt{x-2}+1\right|+\left|\sqrt{x-2}-1\right|\ge2\)

Hay A\(\ge2\) Dấu = xảy ra khi x=2

=> đpcm

6 tháng 8 2018

Áp dụng BĐT AM-GM, Ta có

\(\sqrt{x-1}\le\dfrac{1+x-1}{2}=\dfrac{x}{2}\Rightarrow yz\sqrt{x-1}\le\dfrac{xyz}{2}\)

\(xz\sqrt{y-2}\le\dfrac{xz\sqrt{2\left(y-2\right)}}{\sqrt{2}}\le\dfrac{xyz}{2\sqrt{2}}\)

\(yx\sqrt{z-3}\le yx.\dfrac{3+z-3}{2\sqrt{3}}=\dfrac{xyz}{2\sqrt{3}}\)

\(\Rightarrow\dfrac{xy\sqrt{x-1}+xz\sqrt{y-2}+yz\sqrt{z-3}}{xyz}\le\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}=\dfrac{1}{2}+\dfrac{\sqrt{2}}{4}+\dfrac{\sqrt{3}}{6}\)

15 tháng 7 2019

\(\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}\)

\(=\sqrt{x-1-2\sqrt{x-1}+1}+\sqrt{x-1+2\sqrt{x-1}+1}\)

\(=\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(\sqrt{x-1}+1\right)^2}\)

\(=\left|\sqrt{x-1}-1\right|+\sqrt{x-1}+1\)(*)

\(x\ge2\Rightarrow x-1\ge1\Rightarrow\sqrt{x-1}\ge1\Rightarrow\sqrt{x-1}-1\ge0\)

Khi đó (*)\(=\sqrt{x-1}-1+\sqrt{x-1}+1=2\sqrt{x-1}\)(đpcm)

19 tháng 8 2017

a) Ta có :  \(\left(\sqrt{\sqrt{x^2+x+1}}\right)^2\)\(\left(\sqrt{\sqrt{x^2-x+1}}\right)^2\)

ko âm nên áp dụng bđt \(a^2\)+\(b^2\)\(\ge\)2ab

 \(\left(\sqrt{\sqrt{x^2+x+1}}\right)^2\)+\(\left(\sqrt{\sqrt{x^2-x+1}}\right)^2\)\(\ge\)\(2\left(\sqrt[4]{\left(x^2+x+1\right)\left(x^2-x+1\right)}\right)\)

\(\Leftrightarrow\)\(\sqrt{x^2+x+1}\)+\(\sqrt{x^2-x+1}\)\(\ge\)\(2\left(\sqrt[4]{x^4+x+1}\right)\)\(\ge\)\(2\)\(\forall x\)

19 tháng 5 2017

1/ Sửa đề:   \(x+y+z=\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)

\(\Leftrightarrow\)   \(\left(x+y\right)+\left(y+z\right)+\left(z+x\right)-2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=0\)

\(\Leftrightarrow\)   \(\left(x-2\sqrt{xy}+y\right)+\left(y-2\sqrt{yz}+z\right)+\left(z-2\sqrt{zx}+x\right)=0\)

\(\Leftrightarrow\)   \(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2=0\)

Với mọi x, y, z ta luôn có:   \(\left(\sqrt{x}-\sqrt{y}\right)^2\ge0;\)   \(\left(\sqrt{y}-\sqrt{z}\right)^2\ge0;\)   \(\left(\sqrt{z}-\sqrt{x}\right)^2\ge0;\)

\(\Rightarrow\)   \(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2\ge0\)

Do đó dấu "=" xảy ra    \(\Leftrightarrow\)    \(\hept{\begin{cases}\left(\sqrt{x}-\sqrt{y}\right)^2=0\\\left(\sqrt{y}-\sqrt{z}\right)^2=0\\\left(\sqrt{z}-\sqrt{x}\right)^2=0\end{cases}}\)   \(\Leftrightarrow\)    \(\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}}\)    \(\Leftrightarrow\)    x = y = z

3/ Đây là BĐT Cô-si cho 2 số dương a và b, ta biến đổi tương đương để chứng minh

\(a+b\ge2\sqrt{ab}\)   \(\Leftrightarrow\)   \(\left(a+b\right)^2\ge\left(2\sqrt{ab}\right)^2\)   \(\Leftrightarrow\)   \(\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\)   \(a^2+b^2+2ab-4ab\ge0\)    \(\Leftrightarrow\)    \(a^2-2ab+b^2\ge0\)   \(\Leftrightarrow\)   \(\left(a-b\right)^2\ge0\)

Đẳng thức xảy ra khi và chỉ khi a = b

2/ Vì x > y và xy = 1 áp dụng BĐT Cô-si ta được:

\(\frac{x^2+y^2}{x-y}=\frac{\left(x-y\right)^2+2xy}{x-y}=\left(x-y\right)+\frac{1}{x-y}\ge2\sqrt{\left(x-y\right).\frac{1}{x-y}}=2\)

Đẳng thức xảy ra   \(\Leftrightarrow\)   \(\hept{\begin{cases}x>y\\xy=1\\x-y=\frac{1}{x-y}\end{cases}}\)   \(\Leftrightarrow\)   \(\hept{\begin{cases}x=\frac{1+\sqrt{5}}{2}\\y=\frac{-1+\sqrt{5}}{2}\end{cases}}\)

7 tháng 2 2017

đk: x\(x\ge2,y\ge-1999,z\ge2000\)

pt <-> 2VT=x+y+z

<-> (x-2-\(2\sqrt{x-2}\)+1)+(y+1999-\(2\sqrt{y+1999}\)+1)+(z-2000-\(2\sqrt{z-2000}\)+1)=0

<-> \(\left(\sqrt{x-2}-1\right)^2\)+\(\left(\sqrt{y+1999}-1\right)^2\)+\(\left(\sqrt{z-2000}-1\right)^2\)=0

<-> \(\hept{\begin{cases}\sqrt{x-2}-1=0\\\sqrt{y+1999}-1=0\\\sqrt{z-2000}-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=-1998\\z=2001\end{cases}}}\)(tm)

3 tháng 8 2017

\(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\)

\(=\sqrt{\left(x-2\right)+2\sqrt{2\left(x-2\right)}+2}+\sqrt{\left(x-2\right)-2\sqrt{2\left(x-2\right)}+2}\)

\(=\sqrt{\left(\sqrt{x-2}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{x-2}-\sqrt{2}\right)^2}\)

\(=\sqrt{x-2}+\sqrt{2}+\left|\sqrt{x-2}-\sqrt{2}\right|\)

3 tháng 8 2017

\(VT=x+2\sqrt{2x-4}\)

\(=\left(x-2\right)+2\sqrt{2\left(x-2\right)}+2\)

\(=\left(\sqrt{x-2}+\sqrt{2}\right)^2=VP\left(\text{đ}pcm\right)\)