Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{75}-\sqrt{5\frac{1}{3}}+\frac{9}{2}\sqrt{2\frac{2}{3}}+2\sqrt{27}\)
\(=\sqrt{75}-\sqrt{\frac{16}{3}}+\frac{9}{2}\sqrt{\frac{8}{3}}+2\sqrt{27}\)
\(=5\sqrt{3}-\frac{4}{\sqrt{3}}+3\sqrt{6}+6\sqrt{3}\)
\(=-\frac{4}{\sqrt{3}}+5\sqrt{3}+3\sqrt{6}+6\sqrt{3}\)
\(=-\frac{4}{\sqrt{3}}+11\sqrt{3}+3\sqrt{6}\)
\(=-\frac{4\sqrt{3}}{3}+11\sqrt{3}+3\sqrt{6}\)
b) \(\sqrt{48}-\sqrt{5\frac{1}{3}}+2\sqrt{75}-5\sqrt{1\frac{1}{3}}\)
\(=\sqrt{48}-\sqrt{\frac{16}{3}}+2\sqrt{75}-5\sqrt{\frac{4}{3}}\)
\(=4\sqrt{3}-\frac{4}{\sqrt{3}}+10\sqrt{3}-\frac{10}{\sqrt{3}}\)
\(=-\frac{4}{\sqrt{3}}-\frac{10}{\sqrt{3}}+4\sqrt{3}+10\sqrt{3}\)
\(=-\frac{14\sqrt{3}}{3}+4\sqrt{3}+10\sqrt{3}\)
\(=-\frac{14\sqrt{3}}{3}+14\sqrt{3}\)
c)\(\left(\sqrt{15}+2\sqrt{3}\right)^2+12\sqrt{5}\)
\(=27+12\sqrt{5}+12\sqrt{5}\)
\(=27+24\sqrt{5}\)
d)\(\left(\sqrt{6}+2\right)\left(\sqrt{3}-\sqrt{2}\right)\)
\(=\sqrt{6}+2-\sqrt{3}-\sqrt{2}\)
e) \(\left(\sqrt{3}+1\right)^2-2\sqrt{3}+4\)
\(=4+2\sqrt{3}-2\sqrt{3}+4\)
= 8
f) \(\frac{1}{7+4\sqrt{3}}+\frac{1}{7-4\sqrt{3}}\)
\(=\frac{7-4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}+\frac{7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}\)
\(=\frac{7-4\sqrt{3}+7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}\)
\(=\frac{14}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}\)
= 14
a) \(2\sqrt{2}.\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}=9\)
\(=2\sqrt{2}.\left(\sqrt{3}-2\right)+9+4\sqrt{2}-2\sqrt{6}\)
\(=2\sqrt{6}-4\sqrt{2}+9+4\sqrt{2}-2\sqrt{6}\)
= 9 (đpcm)
b) \(\sqrt{\sqrt{2}+1}-\sqrt{\sqrt{2}-1}=\sqrt{2\left(\sqrt{2}-1\right)}\)
\(=\sqrt{\sqrt{2}+1}-\sqrt{\sqrt{2}-1}=\sqrt{2^{\frac{1}{2}}\left(\sqrt{2}-1\right)}\)
\(=\sqrt{2\left(\sqrt{2}-1\right)}\) (đpcm)
\(a.\left(\sqrt{3}-1\right)^2=4-2\sqrt{3}\) ( sửa đề )
\(VP=4-2\sqrt{3}=3-2\sqrt{3}+1=\left(\sqrt{3}-1\right)^2=VT\)
⇒ ĐPCM.
\(b.\left(\sqrt{3}+1\right)^2=4+2\sqrt{3}\) ( sửa đề )
\(VP=4+2\sqrt{3}=3+2\sqrt{3}+1=\left(\sqrt{3}+1\right)^2=VT\)
⇒ ĐPCM.
Đương làm thì lại nhấn hủy TvT
Bài 1.
a) \(\sqrt{\left(4-3\sqrt{2}\right)^2}\)
\(=\left|4-3\sqrt{2}\right|\)
\(=-\left(4-3\sqrt{2}\right)=3\sqrt{2}-4\)( vì \(3\sqrt{2}>4\))
b) \(\sqrt{\left(\sqrt{3-1}\right)^2}+\sqrt{\left(\sqrt{3-2}\right)^2}\)
\(=\sqrt{\left(\sqrt{2}\right)^2}+\sqrt{1^2}\)
\(=\left|\sqrt{2}\right|+\left|1\right|\)
\(=\sqrt{2}+1=1+\sqrt{2}\)
Bài 2.
Sửa VP = \(\left(\sqrt{5}+2\right)^2\)
VT = \(5+4\sqrt{5}+4=\left(\sqrt{5}\right)^2+2\cdot2\cdot\sqrt{5}+2^2=\left(\sqrt{5}+2\right)^2\)= VP ( đpcm )
Còn ý b) em chưa làm được :((
1: Chứng minh
a) Ta có: \(VT=11+6\sqrt{2}\)
\(=9+2\cdot3\cdot\sqrt{2}+2\)
\(=\left(3+\sqrt{2}\right)^2=VP\)(đpcm)
b) Ta có: \(VP=\left(\sqrt{7}-1\right)^2\)
\(=7-2\cdot\sqrt{7}\cdot1+1\)
\(=8-2\sqrt{7}=VT\)(đpcm)
c) Ta có: \(VT=\left(5-\sqrt{3}\right)^2\)
\(=25-2\cdot5\cdot\sqrt{3}+3\)
\(=28-10\sqrt{3}=VP\)(đpcm)
d) Ta có: \(VP=\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)
\(=\sqrt{3+2\cdot\sqrt{3}\cdot1+1}-\sqrt{3-2\cdot\sqrt{3}\cdot1+1}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\left|\sqrt{3}+1\right|-\left|\sqrt{3}-1\right|\)
\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)\)
\(=\sqrt{3}+1-\sqrt{3}+1\)
\(=2=VT\)(đpcm)
thêm dòng này nữa :33
⇔ 11 + \(6\sqrt{2}=11+6\sqrt{2}\left(đpcm\right)\)
\(a,\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)
Ta có
:\(VT=\sqrt{9-4\sqrt{5}}-\sqrt{5}\)
\(=\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{5}\)
\(=|2-\sqrt{5}|-\sqrt{5}\)
\(=\sqrt{5}-2-\sqrt{5}\)
\(=-2=VP\left(đpcm\right)\)
\(b,\frac{\sqrt{2}+1}{\sqrt{2}-1}=3+2\sqrt{2}\)
Ta có:
\(VT=\frac{\sqrt{2}+1}{\sqrt{2}-1}\)
\(=\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}+1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}\)
\(=\frac{2+\sqrt{2}+\sqrt{2}+1}{\sqrt{2}^2-1^2}\)
\(=\frac{3+2\sqrt{2}}{2-1}\)
\(=3+2\sqrt{2}=VP\left(đpcm\right)\)
c,Bạn xem lại đề
\(d,\sqrt{\frac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\frac{4}{\left(2+\sqrt{5}\right)^2}}=8\)
Ta có:
\(VT=\sqrt{\frac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\frac{4}{\left(2+\sqrt{5}\right)^2}}\)
\(=\sqrt{\frac{2^2}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\frac{2^2}{\left(2+\sqrt{5}\right)^2}}\)
\(=\frac{2}{|2-\sqrt{5}|}-\frac{2}{|2+\sqrt{5}|}\)
\(=\frac{2\left(2+\sqrt{5}\right)}{\left(\sqrt{5}-2\right)\left(2+\sqrt{5}\right)}-\frac{2\left(\sqrt{5}-2\right)}{\left(2+\sqrt{5}\right)\left(\sqrt{5}-2\right)}\)
\(=\frac{4+2\sqrt{5}-2\sqrt{5}+4}{\sqrt{5}^2-2^2}\)
\(=\frac{8}{5-4}\)
\(=8=VP\left(đpcm\right)\)
1/ \(=2+\sqrt{5}-\left|2-\sqrt{5}\right|=2+\sqrt{5}-\sqrt{5}+2=4\)
2/ bạn coi lại đề
3/ \(=\sqrt{2}+1-\left|1-\sqrt{2}\right|=\sqrt{2}+1-\sqrt{2}+1=2\)
4/ \(=\sqrt{3}+2-\left|\sqrt{3}-2\right|=\sqrt{3}+2-2+\sqrt{3}=2\sqrt{3}\)
5/ \(=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}-1+\sqrt{3}+1=2\sqrt{3}\)
6/ \(=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}+1-\sqrt{3}+1=2\)
Các bạn giúp mình với, tối nay mình nộp rồi.
Câu 6 sửa lại đề giúp mình như này nhé:
\(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)
2.+ \(\left(2n+1\right)^2=4n^2+4n+1>4n^2+4n\)
\(\Rightarrow2n+1>\sqrt{4n\left(n+1\right)}=2\sqrt{n\left(n+1\right)}\)
+ \(\frac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\left(2n+1\right)\left(\sqrt{n+1}+\sqrt{n}\right)}\)
\(=\frac{\sqrt{n+1}-\sqrt{n}}{2n+1}< \frac{\sqrt{n+1}-\sqrt{n}}{2\sqrt{n\left(n+1\right)}}=\frac{1}{2}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Do đó : \(A< \frac{1}{2}\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{48}}-\frac{1}{\sqrt{49}}\right)\)
\(\Rightarrow A< \frac{1}{2}\)
1. + \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\left(n+1\right)-n}{\left(n+1\right)\sqrt{n}}=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\left(n+1\right)\sqrt{n}}\)
\(< \frac{\left(\sqrt{n+1}-\sqrt{n}\right)\cdot2\sqrt{n+1}}{\sqrt{n}\left(n+1\right)}=2\cdot\frac{n+1-\sqrt{n\left(n+1\right)}}{\left(n+1\right)\sqrt{n}}=2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Do đó : \(A< 2\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2012}}-\frac{1}{\sqrt{2013}}\right)\)
\(\Rightarrow A< 2\)
Bài 2 tạm thời chưa nghĩ ra :))
a) Ta có :
4 - 2\(\sqrt{3}\) = 1 - 2.1.\(\sqrt{3}\) + 3 = 1 - 2.1.\(\sqrt{3}\) + (\(\sqrt{3}\))2 = (1 - \(\sqrt{3}\))2= (\(\sqrt{3}\) - 1)2
b) Áp dụng câu a ta có:
\(\sqrt{4-2\sqrt{3}}\) - \(\sqrt{3}\) = \(\sqrt{\left(\sqrt{3}-1\right)^2}\) - \(\sqrt{3}\) = (\(\sqrt{3}\) - 1) -\(\sqrt{3}\)
= \(\sqrt{3}\) - 1 - \(\sqrt{3}\) = -1