K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2016

xét số dư của a, b khi chia cho 5 là: 0,1,2,3,4.
ta ghép cặp dần (0,0) (0,1),(0,2)...(3,4) thì chỉ có cặp (0,0) mới đảm bảo \(a^2+b^2+ab\)mới chia hết cho 5.
vậy a, b sẽ có tận cùng là 0 hoặc 5.
nếu a,b có cùng có chữ số tận cùng là 5 loại vì: \(a^2+b^2+ab\)là số lẻ không chia hết cho 2.
nếu a có  chữ số tận cùng bằng 5, b chữ số có tận cùng bằng 0 thì \(a^2+b^2+ab\)là số lẻ nên không chia hết cho 2. (loại vì \(a^2+b^2+ab\)chia hết cho 10).
a, b có chữu số tận cùng bằng 0 khi đó \(a^2+b^2+ab\)là số chẵn nên chia hết cho 2(thỏa mãn).
do a, b có chữ số tận cùng bằng 0 nên \(a^2,b^2,ab\)sẽ có tận cùng là 100 nên \(a^2+b^2+ab\)chia hết cho 100.

8 tháng 8 2016

\(a^2+b^2+ab\) chia hết cho 10

=> \(a^2+b^2+ab\) chia hết cho 2 và 5

\(a^2+b^2+ab=\left(a^2+b^2+2ab\right)-ab\)

\(=\left(a+b\right)^2-ab\)

Vì \(\left(a+b\right)^2;ab\) chia hết cho 2

=> \(\left(a+b\right)^2;ab\) cùng chẵn hoặc cùng lẻ

(+) Nếu \(\left(a+b\right)^2;ab\) (1)

=> a và b cùng lẻ

=> a+b chẵn ( mâu thuẫn với (1) )

=> a và b cùng là số chẵn

Để \(=\left(a+b\right)^2-ab\) chia hết cho 5 thì (a+b)^2 và ab có cúng số dư khi chia cho 10

Mình chỉ biết đến đó

Mà cũng ko chắc là đúng

30 tháng 10 2019

Chú ý:

\(\sqrt{1};\sqrt{2};...;\sqrt{99}< \sqrt{100}\) và A có 100 số hạng!

Do đó: \(A>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}\)

\(=\frac{100}{\sqrt{100}}=10\)

Is that true?

31 tháng 10 2019

mk ko hiểu

bạn làm chi tiết ra được không -_- ?

21 tháng 12 2016

2100 - 1 = (24)25 - 1 = (16 - 1)(1624 - 1623 + ...)

= 15(1624 - 1623 + ...)

Cái này chia hết cho 5

21 tháng 12 2016

Co : \(2^{30}\)đồng dư 4 ( mod 10 )

\(\Rightarrow2^{90}\)dong du \(4^3\)đồng dư 4 ( mod 10 )

\(\Rightarrow2^{100}=2^{90}.2^{10}\)đồng dư 4.1024 đồng dư 6 ( mod 10)

\(\Rightarrow2^{100}-1\)dong du \(6-1\)đồng dư 5 ( mod 10)

Vay \(2^{100}-1\)chia hết cho 5

Đặt A=13+23+...+1003; B=1+2+...+100

Ta có :             

B=101.50

gt⇒A=(1003+13)+(993+23)+...+(503+513)⇒A⋮101

gt⇒A=(993+13)+(983+23)+...+(493+513)+503+1003=A⋮50

⇒A⋮50.101

⇒A⋮B

4 tháng 11 2019

Chỉ cần để ý: \(1^3+2^3+3^3+...+100^3=\left(1+2+3+...+100\right)^2\)

25 tháng 7 2017

Ta có:

\(3^{4n+1}=3.81^n\text{≡}3\left(mod10\right)\)

\(\Rightarrow3^{4n+1}=10k+3\)

\(\Rightarrow2^{3^{4n+1}}=2^{10k+3}=8.1024^k\text{≡}8\left(mod11\right)\left(1\right)\)

Ta lại có:

\(2^{4n+1}=2.16^n\text{≡}2\left(mod5\right)\)

\(\Rightarrow2^{4n+1}=5a+2\)

\(\Rightarrow3^{2^{4n+1}}=3^{5a+2}=9.243^a\text{≡}9\left(mod11\right)\left(2\right)\)

Từ (1) và (2) \(\Rightarrow3^{2^{4n+1}}+2^{3^{4n+1}}+5\text{≡}9+8+5\text{≡}22\text{≡}0\left(mod11\right)\)

25 tháng 7 2017

thiếu đk của n 

14 tháng 10 2018

ta có p20-1=(p4-1)(p16+p12+p8+p4+1)
do p là số nguyên tố lớn hơn 5 suy ra p là 1 số lẻ
p2+1 và p2-1 là các số chẵn
p4-1 chia hết cho 4
p20-1 chia hết cho 4
vì p là số nguyên tố lớn hơn 5 suy ra p là số không chia hết cho 5
p4-1 chia hết cho 5
lập luận dược p16+p12+P8+p4+1 chia hết cho 5
suy ra p20-1 chia hết cho 25
mà (4;25)=1
suy ra p20-1 chia het cho 100