Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: -\(x^2\)+4x - 9
<=> - ( \(x^2\)- 4x + 4 ) - 5
<=> - ( x - 2 )\(^2\) - 5
Vì - ( x - 2 )\(^2\)\(\le\)0 <=> - ( x - 2 )\(^2\) - 5 \(\le\)-5 với mọi x
b) Ta có x\(^2\)- 2x + 9
<=> ( x\(^2\) - 2x +1 ) + 8
<=> ( x - 1 ) \(^2\)+ 8
Vì ( x - 1 ) \(^2\)\(\ge\) 0 <=> ( x - 1 ) \(^2\)+ 8 \(\ge\) 8 với mọi thực x
a,Ta có:\(-x^2+4x-9\)
\(\Leftrightarrow-\left(x^2-4x+4\right)-5\)
\(\Leftrightarrow-\left(x-2\right)^2-5\)
Vì \(-\left(x-2\right)^2\le0\Leftrightarrow-\left(x-2\right)^2-5\le-5\forall x\)
b.Ta có:\(x^2-2x+9\)
\(\Leftrightarrow\left(x^2-2x+1\right)+8\)
\(\Leftrightarrow\left(x-1\right)^2+8\)
Vì \(\left(x-1\right)^2\ge0\Leftrightarrow\left(x-1\right)^2+8\ge8\forall x\)
Đề câu cuối sai chỗ x phải là n
a)\(-x^2+4x-9=-5-\left(x^2-4x+4\right)=-5-\left(x-2\right)^2\)
(x-2)2\(\ge0\forall x\in R\)
=>-(x-2)2\(\le0\forall x\in R\)
=>-5-(x-2)2\(\le-5\forall x\in R\)(ĐPCM)
b)\(x^2-2x+9=\left(x^2-2x+1\right)+8=\left(x-1\right)^2+8\)
(x-1)2\(\ge0\forall x\in R\)
=>(x-1)2+8\(\ge8\forall x\in R\)(đpcm)
c)11x-7<8x+2
<=>11x-8x<2+7
<=>3x<9
<=>x<3
Mà x nguyên dương=>x={1;2}
d)(n+2)2-(n-3)(n+3)\(\le\)40
<=>n2+4n+4-n2+9\(\le\)40
<=>4n+13\(\le\)40
<=>4n\(\le\)27
<=>n\(\le\)\(\dfrac{27}{4}< 7\)
n là số tự nhiên =>n={0;1;...;6}
a. \(x^2+3x+5\)
\(=x^2+2.x^2.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{11}{4}\)
\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)
=> đpcm
1) \(\frac{6x-2}{8}-\frac{3x-6}{8}-\frac{8}{8}>\frac{20-12x}{8}\)
\(<=>6x-2-3x+6-8>20-12x\)
\(<=>15x>24\)
\(<=>x>\frac{24}{15}\)
2) a)|-2,5x|=x-12
TH1: x>=0 => |-2,5x|=2,5x
2,5x=x-12 <=> x=-8 (loại)
TH2: x<0 => |-2,5x|=-2,5x
-2,5x=x-12 <=> x= 3,42857... (loại)
Vậy không có giá trị x thoả mãn
b) |5x|-3x-2=0
TH1: 5x>=0 => x>=0 => |5x|=5x
5x-3x-2 = 0 <=> x=1 (chọn)
TH2: 5x<0 => x<0 => |5x|=-5x
-5x-3x-2=0 <=> x=-0,25 (chọn)
Vậy x=1 hoặc x=-0,25
c) |-2x|+x-5x-3=0
TH1: -2x>=0 <=> x<=0 <=> |-2x|=-2x
-2x+x-5x-3=0 <=> x=-3 (chọn)
TH2: -2x<0 <=> x>0 <=> |-2x|=2x
2x+x-5x-3=0 <=> x=-1,5 (loại)
Vậy x=-3
3) a) Ta có: -x2+4x-4=-(x-2)2<=0
=> -x2+4x-4-5<=-5
=> -x2+4x-9<=-5
b) Ta có: x2-2x+1=(x-1)2>=0
=> x2-2x+1+8>=8
=> x2-2x+9>=8
Bài 2 :
|-2/5x| = x - 12
2/5x = x - 12
2/5x - x = -12
=> -3/5x = -12
=> x =-12 : -3/5
=>x= 20
giả sử x^2-2x+9>/8
<=> x^2-2x+1>/0
<=> (x-1)^2>/0 (đúng với mọi x thuộc R)
vậy x^2-2x+9>/8 với mọi x thuộc R
A) x2+4y22+z22-4x-6z+15>0 <=> (x2-2×2×x+22)+4y2+(z2-2×3×z+32) +(15 -22-32) >0
<=>(x-2)2+4y22+(z-3)2
B) giải
(2X)2+ 2×2X×1 +1 >=0 với mọi X ( (2x+1)2 )
=> (2x+1)2+2 >0
x2−4xy+4y2+3
=(x−2y)2+3
Do (x−2y)2≥0∀x,y
(x−2y)2+3≥0+3∀x,y
(x−2y)2+3>0∀x,y
=> Đpcm
b)2x−2x2−1
=−x2−x2+2x−1
=−x2−(x−1)2
=−[x2+(x−y)2]<0
=> đpcm
Chúc bn học tốt
8: \(10n^3-23n^2+14n-5⋮2n-3\)
\(\Leftrightarrow10n^3-15n^2-8n^2+12n+2n-3-2⋮2n-3\)
=>\(2n-3\in\left\{1;-1;2;-2\right\}\)
hay \(n\in\left\{2;1;\dfrac{5}{2};\dfrac{1}{2}\right\}\)
Lời giải:
a)
Ta có: \(x^2+10x+30=x^2+2.x.5+5^2+5=(x+5)^2+5\)
Vì $(x+5)^2\geq 0, \forall x\Rightarrow x^2+10x+30=(x+5)^2+5\geq 5>0$ (đpcm)
b)
\(4x-x^2-7=-(x^2-4x+7)=-(x^2+4x+4+3)=-[(x-2)^2+3]\)
Vì $(x-2)^2\geq 0, \forall x\Rightarrow (x-2)^2+3\geq 3>0$
$\Rightarrow 4x-x^2-7=-[(x-2)^2+3]< 0$ (đpcm)
c)
\(x^2+4y^2-2x-4y+2=(x^2-2x+1)+(4y^2-4y+1)\)
\(=(x-1)^2+(2y-1)^2\)
Vì $(x-1)^2\geq 0; (2y-1)^2\geq 0, \forall x,y$
$\Rightarrow x^2+4y^2-2x-4y+2=(x-1)^2+(2y-1)^2\geq 0$ (đpcm)
câu b sai đề bb ơi ,-,
a/ \(-x^2+4x-9=-\left(x^2-4x+4\right)-5=-\left(x-2\right)^2-5\)
Có: \(\left(x-2\right)^2\ge0\forall x\Rightarrow-\left(x-2\right)^2\le0\Rightarrow-\left(x-2\right)^2-5\le-5\left(đpcm\right)\)
b/ \(x^2-2x+90=\left(x^2-2x+1\right)+89=\left(x-1\right)^2+89\)
Có: \(\left(x-1\right)^2\ge0\forall x\Rightarrow\left(x-1\right)^2+89\ge89\left(đpcm\right)\)
P/s: b tui sửa đề nhes