Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với n chẵn thì n = 2k
\(\Rightarrow16^{2k}-1=256^k-1=\left(256-1\right)\left(256^{k-1}+...\right)=255\left(256^{k-1}+...\right)=17.15.\left(256^{k-1}+...\right)\)
Chia hết cho 17
Với n lẻ thì n = 2k + 1
\(\Rightarrow16^{2k+1}-1=16\left(16^{2k}-1\right)+15\)không chia hết cho 17
Vậy 16n - 1 chia hết cho 17 khi và chỉ khi n chẵn
\(256^{k-1}+....\) là gì vậy bạn nhìn khó hiểu vậy
Câu hỏi của Nghĩa Nguyễn - Toán lớp 9 - Học toán với OnlineMath
323 =17.19.
Ta có: \(20^n+16^n-3^n-1=\left(20^n-3^n\right)+\left(16^n-1\right)\)
\(20^n-3^n⋮17,16^n-1⋮17\)(vì n chẵn)
\(\Rightarrow20^n+16^n-3^n-1⋮17\)(1)
Tương tự:
\(20^n+16^n-3^n-1=\left(20^n-1\right)+\left(16^n-3^n\right)\)
\(20^n-1⋮19,16^n-3^n⋮19\)(vì n chẵn)
\(\Rightarrow20^n+16^n-3^n-1⋮19\)(2)
Từ (1) và (2) \(\Rightarrow20^n+16^n-3^n-1⋮\left(17,19\right)=323\)(đpcm)
Giải
55^(n+1) -55^n
= 55^n.55 -55^n
=55^n( 55 - 1)
=55^n.54 luôn luôn chia hết cho 54 ( do tích có 1 thừa số là 54)
Giải:
Ta có ; 55^(n+1) -55^n
= 55^n.55 -55^n
=55^n( 55 - 1)
=55^n.54 luôn luôn chia hết cho 54 ( do tích có 1 thừa số là 54)
nhóm 4 số lại,nhóm 1 là tứ số thứ nhất đến số thứ 4,cứ nhóm như vậy ,đặt thừa số chung ra ngoài
sẽ xuất hiện 120
Đề vô lí tí !
Để em chứng minh vô lí ( Sai thì thôi nha đây chỉ là ý kiến riêng ) :
\(16^n-1\text{ }⋮\text{ }17\) với 1 là 1 số tự nhiên chẵn
Gỉa sử số tự nhiên chẵn đó là 2 . Thì :
\(16^n-1=16^2-1=256-1=255\text{ }⋮̸\text{ }7\)
\(\Rightarrow\text{ Đề sai}\)
\(nchan\Rightarrow n=2k\left(k\inℕ\right)\)
\(16\equiv-1\left(mod17\right)\Rightarrow16^2\equiv1\left(mod17\right)\Rightarrow16^{2k}=16^n\equiv1\left(mod17\right)\)
\(16^n-1⋮17\)