Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\geq \frac{4}{x^2+xy+y^2+xy}=\frac{4}{(x+y)^2}\geq \frac{4}{1^2}=4\)
Ta có đpcm
Dấu "=" xảy ra khi $x=y=\frac{1}{2}$
xí câu 1:))
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)(1)
Đặt a = x + y - 2 => a > 0 ( vì x,y > 1 )
Khi đó \(\left(1\right)=\frac{\left(a+2\right)^2}{a}=\frac{a^2+4a+4}{a}=\left(a+\frac{4}{a}\right)+4\ge2\sqrt{a\cdot\frac{4}{a}}+4=8\)( AM-GM )
Vậy ta có đpcm
Đẳng thức xảy ra <=> a=2 => x=y=2
Lời giải:
Xét hiệu: \(x-\sqrt{x}=\sqrt{x}(\sqrt{x}-1)=\frac{\sqrt{x}(\sqrt{x}-1)(\sqrt{x}+1)}{\sqrt{x}+1}=\frac{\sqrt{x}(x-1)}{\sqrt{x}+1}\)
a) Với $x>1$ thì: \(\sqrt{x}>0; x-1>0; \sqrt{x}+1>0\Rightarrow x-\sqrt{x}=\frac{\sqrt{x}(x-1)}{\sqrt{x}+1}>0\)
\(\Rightarrow x> \sqrt{x}\)
b) Với $0< x< 1$ thì:
\(\sqrt{x}>0; x-1< 0; \sqrt{x}+1>0\Rightarrow x-\sqrt{x}=\frac{\sqrt{x}(x-1)}{\sqrt{x}+1}< 0\)
\(\Rightarrow x< \sqrt{x}\)
\(\sqrt{1+x^2}\text{ có nghĩa khi :}\)
\(1+x^2\ge0\)
mà \(1+x^2>0\text{ với mọi x nên:}\)
Với mọi x căn thức đều có nghĩa
Đặt \(x=a+\frac{1}{3}\) ; \(y=b+\frac{1}{3}\) ; \(z=c+\frac{1}{3}\)
\(\Rightarrow x+y+z=\left(a+b+c\right)+1=1\Rightarrow a+b+c=0\)
Ta có : \(x^2+y^2+z^2=\left(a+\frac{1}{3}\right)^2+\left(b+\frac{1}{3}\right)^2+\left(c+\frac{1}{3}\right)^2=\left(a^2+b^2+c^2\right)+\frac{2}{3}\left(a+b+c\right)+\frac{1}{3}\)
\(=a^2+b^2+c^2+\frac{1}{3}\ge\frac{1}{3}\)
Vậy \(x^2+y^2+z^2\ge\frac{1}{3}\)
\(x^4>1\)
<=> \(x^4-1>0\)
<=> \(\left(x-1\right)\left(x+1\right)\left(x^2+1\right)>0\)
Do x2 + 1 > 0 với mọi x nên
\(\left(x-1\right)\left(x+1\right)>0\)
<=>> \(\hept{\begin{cases}x-1>0\\x+1>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>1\\x>-1\end{cases}}\Rightarrow x>1\) Hay \(\hept{\begin{cases}x-1< 0\\x+1< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 1\\x< -1\end{cases}}\Rightarrow x< -1\)
Vậy ................
x4 > 1
<=> x2 > 1
<=> \(|x|\)> 1
Áp dụng công thức: \(|A|>a\left(a>0\right)\Rightarrow\orbr{\begin{cases}A>a\\A< -a\end{cases}}\) (cái này đã học từ lớp dưới rồi nha bn)
<=> \(\orbr{\begin{cases}x>1\\x< -1\end{cases}}\)