K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2018

\(x^6+x^4-x^3+x^2+1>0\)

\(\Leftrightarrow x^6+\left(x^2\right)^2-2\cdot\dfrac{1}{2}x\cdot x^2+\left(\dfrac{1}{2}x\right)^2+\dfrac{3}{4}x^2+1>0\)

\(\Leftrightarrow x^6+\left(x^2-\dfrac{1}{2}x\right)^2+\dfrac{3}{4}x^2+1>0\)(luôn đúng)

=>đpcm

27 tháng 4 2018

\(VT=\left(x-1\right)\left(x-3\right)\left(x-4\right)\left(x-6\right)+9\)

\(=\left(x^2-7x+6\right)\left(x^2-7x+12\right)+9\)

Đặt   \(x^2-7x+9=a\)  ta có:

\(VT=\left(a-3\right)\left(a+3\right)+9\)\(=a^2-9+9=a^2\)\(\ge0\)  (đpcm)

16 tháng 8 2015

Ta có:

(x-1)(x-3)(x-4)(x-6)+9=(x2-7x+6)(x2-7x+12)+9 

Đặt x2-7x+6=y

<=>y(y+6)+9=y2+6y+9=(y+3)2 lớn hơn hoặc bàng 0

11 tháng 5 2017

Bài 2: 

\(a^4+b^4\ge a^3b+b^3a\)

\(\Leftrightarrow a^4-a^3b+b^4-b^3a\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

ta thấy : \(\orbr{\orbr{\begin{cases}\left(a-b\right)^2\ge0\\\left(a^2+ab+b^2\right)\ge0\end{cases}}}\Leftrightarrow dpcm\)

Dấu " = " xảy ra khi a = b

tk nka !!!! mk cố giải mấy bài nữa !11

27 tháng 3 2019

1/Thêm 6 vào 2 vế,ta cần c/m:

\(\left(x^4+1+1+1\right)+\left(y^4+1+1+1\right)\ge8\)

Thật vậy,áp dụng BĐT AM-GM cho cái biểu thức trong ngoặc,ta được:

\(VT\ge4\left(x+y\right)=4.2=8\) (đpcm)

Dấu "=" xảy ra khi x = y = 1 (loại x = y = -1 vì không thỏa mãn x + y = 2)

a: 3(x-1)-2(x+1)=-3

=>3x-3-2x-2=-3

=>x-5=-3

=>x=2

Thay x=2 vào pt(1), ta được:

\(2m^2+m-6=0\)

=>2m2+4m-3m-6=0

=>(m+2)(2m-3)=0

=>m=-2 hoặc m=3/2

c: \(x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

13 tháng 10 2017

\(x^4+x^3+x^2+x+1=\left(x^4+x^3+\frac{1}{4}x^2\right)+\left(\frac{1}{4}x^2+x+1\right)+\frac{1}{2}x^2\)

\(=\left(x^2+\frac{1}{2}x\right)^2+\left(\frac{1}{2}x+1\right)^2+\frac{1}{2}x^2\ge0\) (Do từng hạng tử của đa thức đều \(\ge0\))

Nếu \(x=0\) thì

 \(\left(x^2+\frac{1}{2}x\right)^2+\left(\frac{1}{2}x+1\right)^2+\frac{1}{2}x^2=\left(0+\frac{1}{2}.0\right)^2+\left(\frac{1}{2}.0+1^2\right)+\frac{1}{2}.0^2=1>0\)

Do đó \(\left(x^2+\frac{1}{2}x\right)^2+\left(\frac{1}{2}x+1\right)^2+\frac{1}{2}x^2>0\) hay \(x^4+x^3+x^2+x+1>0\)

31 tháng 3 2017

Ta có \(\left[\left(x-1\right)\left(x-4\right)\right]\left[\left(x-2\right)\left(x-3\right)\right]+2\)

\(\Leftrightarrow\left(x^2-5x+4\right)\left(x^2-5x+6\right)+2\)

Đặt \(t=x^2-5x+5\)

\(\Leftrightarrow\left(t-1\right)\left(t+1\right)+2\)

\(\Leftrightarrow t^2-1+2\)

\(\Leftrightarrow t^2+1\)

\(t^2\ge0\)

\(\Rightarrow t^2+1>0\)

\(\Leftrightarrow\left(x^2-5x+5\right)^2+1>0\)

Vậy biểu thức trên > 0 với mọi x

31 tháng 3 2017

Ta cso

(x-1)(x-2)(x-3)(x-4)+2

<=> [ (x-1)(x-4)][(x-2)(x-3)] +2

<=> (x2-5x+4)(x2-5x+6)+2

<=> (x2-5x+5-1)(x2-5x+5+1)+2

<=> (x2-5x+5)2-1+2

<=> (x2-5x+5)2+1

Ta thấy (x2-5x+5)2>=0

=> (x2-5x+5)2+1 >1>0(cmđ)

1 tháng 8 2016

= (x2-7x+6)(x2-7x+12)+9

đặt x2-7x+9=a ta đc 

(a-3)(a+3)+9=a2-32+9=a2 >= 0 với mọi x ( đpcm)

1 tháng 8 2016

Chứng minh rằng các biểu thức sau luôn dương với mọi x

a) a+ b2 + 2 - 4ab         (>= 0)

b) (x-1)(x-3)(x-4)(x-6)+9             (>=0)

= (x2-7x+6)(x2-7x+12)+9

đặt x2-7x+9=a ta đc 

(a-3)(a+3)+9=a2-32+9=a2 >= 0 với mọi x ( đpcm)

3 tháng 7 2017

Bài 2:

a) Áp dụng BĐT AM - GM ta có:

\(\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=\dfrac{1}{4a}+\dfrac{1}{4b}\) \(\ge2\sqrt{\dfrac{1}{4^2ab}}=\dfrac{2}{4\sqrt{ab}}=\dfrac{1}{2\sqrt{ab}}\)

\(\ge\dfrac{1}{a+b}\) (Đpcm)

b) Trừ 1 vào từng vế của BĐT ta được BĐT tương đương:

\(\left(\frac{x}{2x+y+z}-1\right)+\left(\frac{y}{x+2y+z}-1\right)+\left(\frac{z}{x+y+2z}-1\right)\le\frac{-9}{4}\)

\(\Leftrightarrow-\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\le-\frac{9}{4}\)

\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\ge\frac{9}{4}\)

Áp dụng BĐT phụ \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\) ta có:

\(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\)

\(\ge\dfrac{9}{2x+y+z+x+2y+z+x+y+2z}=\dfrac{9}{4\left(x+y+z\right)}\)

\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\ge\frac{9}{4}\)

\(\Leftrightarrow\dfrac{x}{2x+y+z}+\dfrac{y}{x+2y+z}+\dfrac{z}{x+y+2z}\le\dfrac{3}{4}\) (Đpcm)

3 tháng 7 2017

Bài 1:

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT\ge\dfrac{\left(a+b\right)^2}{a-1+b-1}=\dfrac{\left(a+b\right)^2}{a+b-2}\)

Nên cần chứng minh \(\dfrac{\left(a+b\right)^2}{a+b-2}\ge8\)

\(\Leftrightarrow\left(a+b\right)^2\ge8\left(a+b-2\right)\)

\(\Leftrightarrow a^2+2ab+b^2\ge8a+8b-16\)

\(\Leftrightarrow\left(a+b-4\right)^2\ge0\) luôn đúng

Ta có : \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)

\(=\left[\left(x+1\right)\left(x+4\right)\right].\left[\left(x+2\right)\left(x+3\right)\right]+1\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)

\(=\left(x^2+5x+4\right)\left[\left(x^2+5x+4\right)+2\right]+1\)

\(=\left(x^2+5x+4\right)^2+2\left(x^2+5x+4\right)+1\)

\(=\left(x^2+5x+4+1\right)^2=\left(x^2+5x+5\right)^2\ge0\forall x\)