Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
(x-1)(x-3)(x-4)(x-6)+9=(x2-7x+6)(x2-7x+12)+9
Đặt x2-7x+6=y
<=>y(y+6)+9=y2+6y+9=(y+3)2 lớn hơn hoặc bàng 0
Bài 2:
\(a^4+b^4\ge a^3b+b^3a\)
\(\Leftrightarrow a^4-a^3b+b^4-b^3a\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)
ta thấy : \(\orbr{\orbr{\begin{cases}\left(a-b\right)^2\ge0\\\left(a^2+ab+b^2\right)\ge0\end{cases}}}\Leftrightarrow dpcm\)
Dấu " = " xảy ra khi a = b
tk nka !!!! mk cố giải mấy bài nữa !11
a: 3(x-1)-2(x+1)=-3
=>3x-3-2x-2=-3
=>x-5=-3
=>x=2
Thay x=2 vào pt(1), ta được:
\(2m^2+m-6=0\)
=>2m2+4m-3m-6=0
=>(m+2)(2m-3)=0
=>m=-2 hoặc m=3/2
c: \(x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
\(x^4+x^3+x^2+x+1=\left(x^4+x^3+\frac{1}{4}x^2\right)+\left(\frac{1}{4}x^2+x+1\right)+\frac{1}{2}x^2\)
\(=\left(x^2+\frac{1}{2}x\right)^2+\left(\frac{1}{2}x+1\right)^2+\frac{1}{2}x^2\ge0\) (Do từng hạng tử của đa thức đều \(\ge0\))
Nếu \(x=0\) thì
\(\left(x^2+\frac{1}{2}x\right)^2+\left(\frac{1}{2}x+1\right)^2+\frac{1}{2}x^2=\left(0+\frac{1}{2}.0\right)^2+\left(\frac{1}{2}.0+1^2\right)+\frac{1}{2}.0^2=1>0\)
Do đó \(\left(x^2+\frac{1}{2}x\right)^2+\left(\frac{1}{2}x+1\right)^2+\frac{1}{2}x^2>0\) hay \(x^4+x^3+x^2+x+1>0\)
Ta có \(\left[\left(x-1\right)\left(x-4\right)\right]\left[\left(x-2\right)\left(x-3\right)\right]+2\)
\(\Leftrightarrow\left(x^2-5x+4\right)\left(x^2-5x+6\right)+2\)
Đặt \(t=x^2-5x+5\)
\(\Leftrightarrow\left(t-1\right)\left(t+1\right)+2\)
\(\Leftrightarrow t^2-1+2\)
\(\Leftrightarrow t^2+1\)
mà \(t^2\ge0\)
\(\Rightarrow t^2+1>0\)
\(\Leftrightarrow\left(x^2-5x+5\right)^2+1>0\)
Vậy biểu thức trên > 0 với mọi x
Ta cso
(x-1)(x-2)(x-3)(x-4)+2
<=> [ (x-1)(x-4)][(x-2)(x-3)] +2
<=> (x2-5x+4)(x2-5x+6)+2
<=> (x2-5x+5-1)(x2-5x+5+1)+2
<=> (x2-5x+5)2-1+2
<=> (x2-5x+5)2+1
Ta thấy (x2-5x+5)2>=0
=> (x2-5x+5)2+1 >1>0(cmđ)
b
= (x2-7x+6)(x2-7x+12)+9
đặt x2-7x+9=a ta đc
(a-3)(a+3)+9=a2-32+9=a2 >= 0 với mọi x ( đpcm)
Chứng minh rằng các biểu thức sau luôn dương với mọi x
a) a4 + b2 + 2 - 4ab (>= 0)
b) (x-1)(x-3)(x-4)(x-6)+9 (>=0)
= (x2-7x+6)(x2-7x+12)+9
đặt x2-7x+9=a ta đc
(a-3)(a+3)+9=a2-32+9=a2 >= 0 với mọi x ( đpcm)
Bài 2:
a) Áp dụng BĐT AM - GM ta có:
\(\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=\dfrac{1}{4a}+\dfrac{1}{4b}\) \(\ge2\sqrt{\dfrac{1}{4^2ab}}=\dfrac{2}{4\sqrt{ab}}=\dfrac{1}{2\sqrt{ab}}\)
\(\ge\dfrac{1}{a+b}\) (Đpcm)
b) Trừ 1 vào từng vế của BĐT ta được BĐT tương đương:
\(\left(\frac{x}{2x+y+z}-1\right)+\left(\frac{y}{x+2y+z}-1\right)+\left(\frac{z}{x+y+2z}-1\right)\le\frac{-9}{4}\)
\(\Leftrightarrow-\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\le-\frac{9}{4}\)
\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\ge\frac{9}{4}\)
Áp dụng BĐT phụ \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\) ta có:
\(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\)
\(\ge\dfrac{9}{2x+y+z+x+2y+z+x+y+2z}=\dfrac{9}{4\left(x+y+z\right)}\)
\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\ge\frac{9}{4}\)
\(\Leftrightarrow\dfrac{x}{2x+y+z}+\dfrac{y}{x+2y+z}+\dfrac{z}{x+y+2z}\le\dfrac{3}{4}\) (Đpcm)
Bài 1:
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(VT\ge\dfrac{\left(a+b\right)^2}{a-1+b-1}=\dfrac{\left(a+b\right)^2}{a+b-2}\)
Nên cần chứng minh \(\dfrac{\left(a+b\right)^2}{a+b-2}\ge8\)
\(\Leftrightarrow\left(a+b\right)^2\ge8\left(a+b-2\right)\)
\(\Leftrightarrow a^2+2ab+b^2\ge8a+8b-16\)
\(\Leftrightarrow\left(a+b-4\right)^2\ge0\) luôn đúng
Ta có : \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)
\(=\left[\left(x+1\right)\left(x+4\right)\right].\left[\left(x+2\right)\left(x+3\right)\right]+1\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)
\(=\left(x^2+5x+4\right)\left[\left(x^2+5x+4\right)+2\right]+1\)
\(=\left(x^2+5x+4\right)^2+2\left(x^2+5x+4\right)+1\)
\(=\left(x^2+5x+4+1\right)^2=\left(x^2+5x+5\right)^2\ge0\forall x\)
\(x^6+x^4-x^3+x^2+1>0\)
\(\Leftrightarrow x^6+\left(x^2\right)^2-2\cdot\dfrac{1}{2}x\cdot x^2+\left(\dfrac{1}{2}x\right)^2+\dfrac{3}{4}x^2+1>0\)
\(\Leftrightarrow x^6+\left(x^2-\dfrac{1}{2}x\right)^2+\dfrac{3}{4}x^2+1>0\)(luôn đúng)
=>đpcm