K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)

\(=\left[\left(x+1\right)\left(x+4\right)\right].\left[\left(x+2\right)\left(x+3\right)\right]+1\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)

\(=\left(x^2+5x+4\right)\left[\left(x^2+5x+4\right)+2\right]+1\)

\(=\left(x^2+5x+4\right)^2+2\left(x^2+5x+4\right)+1\)

\(=\left(x^2+5x+4+1\right)^2=\left(x^2+5x+5\right)^2\ge0\forall x\)

16 tháng 9 2018

a) \(x^2+8x+17=\left(x^2+8x+16\right)+1=\left(x+4\right)^2+1\ge1>0\)

\(x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

16 tháng 9 2018

giải giúp mik với

2 tháng 10 2019

Ai nhanh và đúng thì mình sẽ tick và add friends nhé. Thanks. Please help me!!!

a: 3(x-1)-2(x+1)=-3

=>3x-3-2x-2=-3

=>x-5=-3

=>x=2

Thay x=2 vào pt(1), ta được:

\(2m^2+m-6=0\)

=>2m2+4m-3m-6=0

=>(m+2)(2m-3)=0

=>m=-2 hoặc m=3/2

c: \(x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

31 tháng 3 2017

Ta có \(\left[\left(x-1\right)\left(x-4\right)\right]\left[\left(x-2\right)\left(x-3\right)\right]+2\)

\(\Leftrightarrow\left(x^2-5x+4\right)\left(x^2-5x+6\right)+2\)

Đặt \(t=x^2-5x+5\)

\(\Leftrightarrow\left(t-1\right)\left(t+1\right)+2\)

\(\Leftrightarrow t^2-1+2\)

\(\Leftrightarrow t^2+1\)

\(t^2\ge0\)

\(\Rightarrow t^2+1>0\)

\(\Leftrightarrow\left(x^2-5x+5\right)^2+1>0\)

Vậy biểu thức trên > 0 với mọi x

31 tháng 3 2017

Ta cso

(x-1)(x-2)(x-3)(x-4)+2

<=> [ (x-1)(x-4)][(x-2)(x-3)] +2

<=> (x2-5x+4)(x2-5x+6)+2

<=> (x2-5x+5-1)(x2-5x+5+1)+2

<=> (x2-5x+5)2-1+2

<=> (x2-5x+5)2+1

Ta thấy (x2-5x+5)2>=0

=> (x2-5x+5)2+1 >1>0(cmđ)

15 tháng 12 2016

a) \(x^2-2x+3=\left(x^2-2x+1\right)+2=\left(x-1\right)^2+2\)

Vì: \(\left(x-1\right)^2\ge0,\forall x\)

=> \(\left(x-1\right)^2+2>0,\forall x\)

=>đpcm

b) \(x^2+7x+13=\left(x^2+7x+\frac{49}{4}\right)+\frac{3}{4}=\left(x+\frac{7}{2}\right)^2+\frac{3}{4}\)

Vì: \(\left(x+\frac{7}{2}\right)^2\ge0,\forall x\)

=> \(\left(x+\frac{7}{2}\right)^2+\frac{3}{4}>0,\forall x\)

=>đpcm

c) \(x-x^2-1=-\left(x^2-x+\frac{1}{4}\right)-\frac{3}{4}=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\)

Vì: \(-\left(x-\frac{1}{2}\right)^2\le0,\forall x\)

=> \(-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}< 0,\forall x\)

=>đpcm

15 tháng 12 2016

ng đầu tiên trên hoc24 nắm chắc kiến thức toán học là cj đó