K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2015

Gọi d là ƯCLN của (8n+5,6n+4) 

Khi đó :8n+5 chia hết cho d

6n+4 chia hết cho d

Xét hiệu :4(6n+4)-3.(8n+5) chia hết cho d

=24n+16-24n+15 chia hết cho d

=16-15 chia hết cho d

=1 chia hết cho d =>d=1 hoặc -1(dpcm)

Xong 

6 tháng 4 2017

để cm 8n+5/6n+4 là PSTG thì phải cm 8n+5 và 6n+4 là hai số nguyên tố cùng nhau

Đặt ƯCLN(8n+5,6n+4)=d (d thuộc N;d>1)

8n+5:d => 3.(8n+5):d=>24n+15:d

6n+4 :d => 4.(6n+4):d=>24n+16:d

ta có (24n+16-24n+15):d

               1:d=>d=1

vậy 8n+5/6n+4 là PSTG

26 tháng 4 2020

a) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 \(⋮\)d; 14n+3 \(⋮\)d

=> (14n+3) -(21n+4) \(⋮\)d

=> 3(14n+3) -2(21n+4) \(⋮\)d

=> 42n+9 - 42n -8 \(⋮\)d

=> 1\(⋮\)d

=> 21n+4/14n+3 là phân số tối giản

Vậy...

c) Gọi ƯC(21n+3; 6n+4) =d; 21n+3/6n+4 =A => 21n+3 \(⋮\)d; 6n+4 \(⋮\)d

=> (6n+4) - (21n+3) \(⋮\)d

=> 7(6n+4) - 2(21n+3) \(⋮\)d

=> 42n +28 - 42n -6\(⋮\)d

=> 22 \(⋮\)cho số nguyên tố d

\(\in\){11;2}

Nếu phân số A rút gọn được cho số nguyên tố d thì d=2 hoặc d=11

Nếu A có thể rút gọn cho 2 thì 6n+4 luôn luôn chia hết cho 2. 21n+3 chia hết cho 2 nếu n là số lẻ

Nếu A có thể rút gọn cho 11 thì 21n+3 \(⋮\)11 => 22n -n +3\(⋮\)11 => n-3 \(⋮\)11 Đảo lại với n=11k+3 thì 21n+3 và 6n+4 chia hết cho 11

Vậy với n là lẻ hoặc n là chẵn mà n=11k+3 thì phân số đó rút gọn được

13 tháng 1 2016

gợi ý nha;

d thuộc UCLN(8N+5;6N+4) 

tính ra thì d=1

phân số này là phân số tối giản

5 tháng 3 2017

Gọi UCLN(4n+1,6n+1) là d

Ta có: 4n+1 chia hết cho d => 3(4n+1) chia hết cho d => 12n + 3 chia hết cho d

          6n+1 chia hết cho d => 2(6n+1) chia hết cho d => 12n + 2 chia hết cho d

=> 12n + 3  - (12n + 2) chia hết cho d

=> 1 chia hết cho d => d = 1

=> UCLN(4n+1,6n+1) = 1

Vậy \(\frac{4n+1}{6n+1}\)là p/s tối giản

NV
30 tháng 3 2023

Gọi \(d=ƯC\left(6n+7;3n+2\right)\) với \(d\ge1;d\in N\)

\(\Rightarrow\left\{{}\begin{matrix}6n+7⋮d\\3n+2⋮d\end{matrix}\right.\)

\(\Rightarrow6n+7-2\left(3n+2\right)⋮d\)

\(\Rightarrow3⋮d\) \(\Rightarrow\left[{}\begin{matrix}d=1\\d=3\end{matrix}\right.\)

Mà \(\left\{{}\begin{matrix}6n+7=3\left(2n+2\right)+1⋮̸3\\3n+2⋮̸3\end{matrix}\right.\) \(\Rightarrow d\ne3\)

\(\Rightarrow d=1\Rightarrow6n+7\) và \(3n+2\) nguyên tố cùng nhau

Hay \(\dfrac{6n+7}{3n+2}\) tối giản với mọi n tự nhiên

30 tháng 3 2023

Gọi d là ƯC(6n+7;3n+2) với d≠0;d ≥1(d∈N)

⇒ 6n+7 ⋮ d

     3n+2 ⋮ d

⇒6n+7 - 2(3n+2)⋮ d

⇒3⋮d

d∈(1;3)

Vậy 6n+7/3n+2 là phân số tối giản vì là nguyên tố cùng nha

 

 

19 tháng 4 2020

a)Gọi ƯCLN(n + 1 ; 2n + 3) = d

\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}\Rightarrow}\left(2n+3\right)-\left(2n+2\right)⋮d}\)

\(\Rightarrow\)\(1⋮d\)

\(\Rightarrow d\inƯ\left(1\right)\Rightarrow d\in\left\{\pm1\right\}\)

=> n + 1 ; 2n + 3 là 2 số nguyên tố cùng nhau

\(\Rightarrow\frac{n+1}{2n+3}\)là phân số tối giản

b) Gọi ƯCLN(8n + 5 ; 6n + 4) = d

\(\Rightarrow\hept{\begin{cases}8n+5⋮d\\6n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(8n+5\right)⋮d\\4\left(6n+4\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}24n+15⋮d\\24n+16⋮d\end{cases}\Rightarrow}\left(24n+16\right)-\left(24n+15\right)⋮d}\)

\(\Rightarrow\)\(1⋮d\)

\(\Rightarrow d\inƯ\left(1\right)\Rightarrow d\in\left\{\pm1\right\}\)

=> 8n + 5 ; 6n + 4 là 2 số nguyên tố cùng nhau

\(\Rightarrow\frac{8n+5}{6n+4}\)là phân số tối giản

15 tháng 1 2016

Tử và mẫu nguyên tố cùng nhau

12 tháng 5 2023

A = \(\dfrac{2n+1}{8n+6}\)  (n \(\ne\) - \(\dfrac{3}{4}\))

Gọi ước chung lớn nhất của 2n + 1 và 8n + 6 là d

Ta có : \(\left\{{}\begin{matrix}2n+1⋮d\\8n+6⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}8n+4⋮d\\8n+6⋮d\end{matrix}\right.\) 

Trừ vế cho vế ta được:  8n + 6 - 8n - 4 ⋮ d ⇒  2 \(⋮\) d ⇒ d = { 1; 2}

Nếu d = 2 ta có: 2n + 1  ⋮ 2 ⇒ 1  ⋮ 2 ( vô lý)

Vậy d = 1 nên ước chung lớn nhất của 2n + 1 và 8n + 6 là 1

Hay phân số: \(\dfrac{2n+1}{8n+6}\) là phân số tối giản điều phải chứng minh

 

\(\frac{2n+1}{3n+2}\)

Gọi \(d\inƯC\left(2n+1;3n+2\right)\)

Ta có : \(2\left(3n+2\right)-3\left(2n+1\right)⋮d\)

\(\Leftrightarrow6n+4-6n+3⋮d\)

\(\Leftrightarrow1⋮d\Rightarrow d=\pm1\)

\(\frac{4n+1}{6n+1}\)

Gọi \(d\inƯC\left(4n+1;6n+1\right)\)

Ta có :

\(3\left(4n+1\right)-2\left(6n+1\right)⋮d\)

\(\Leftrightarrow12n+3-12n+2⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=\pm1\)