Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(a_n=1+\frac{2^n\left[1.3.5...\left(2n-1\right)\right]}{\left(n+5\right)\left(n+6\right)...\left(2n\right)}\)
\(=1+\frac{2^n\left(2n\right)!}{\left[2.4.6..\left(2n\right)\right]\left[\left(n+5\right)\left(n+6\right)..\left(2n\right)\right]}\)
\(=1+\frac{\left(2n\right)!}{n!\left(n+5\right)\left(n+6\right)...\left(2n\right)}\)
\(=1+\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)\)
mặt khác \(1+\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)=\left(n^2+5n+5\right)^2\)
do đó an luôn là SCP
Xét vế trái : \(\left(\sqrt{n+1}-\sqrt{n}\right)^2=2n+1-2\sqrt{n}.\sqrt{n+1}\)
Xét vế phải : \(\sqrt{\left(2n+1\right)^2}-\sqrt{\left(2n+1\right)^2-1}=\left|2n+1\right|-\sqrt{\left(2n+1-1\right)\left(2n+1+1\right)}=2n+1-2\sqrt{n}.\sqrt{n+1}\)
=> VT = VP
=> đpcm
Lời giải:
Ta thấy \((2n+1)^2=4n^2+4n+1> 4n^2+4n\)
\(\Leftrightarrow (2n+1)^2> 2n(2n+2)\) \(\Leftrightarrow \frac{1}{(2n+1)^2}\leq \frac{1}{2n(2n+2)}\)
Do đó:
\(\left\{\begin{matrix} \frac{1}{3^2}< \frac{1}{2.4}\\ \frac{1}{5^2}< \frac{1}{4.6}\\ .......\\ \frac{1}{(2n+1)^2}< \frac{1}{2n(2n+2)}\end{matrix}\right.\)
\(\Rightarrow \frac{1}{9}+\frac{1}{25}+....+\frac{1}{(2n+1)^2}< \frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{2n(2n+2)}=M\) (1)
\(2M=\frac{2}{2.4}+\frac{2}{4.6}+....+\frac{2}{2n(2n+2)}\)
\(=\frac{4-2}{2.4}+\frac{6-4}{4.6}+\frac{8-6}{6.8}+....+\frac{2n+2-2n}{2n(2n+2)}\)
\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-...+\frac{1}{2n}-\frac{1}{2n+2}\)
\(=\frac{1}{2}-\frac{1}{2n+2}< \frac{1}{2}\)
\(\Rightarrow M< \frac{1}{4} (2)\)
Từ (1),(2) suy ra \(\frac{1}{9}+\frac{1}{25}+...+\frac{1}{(2n+1)^2}< \frac{1}{4}\) (đpcm)
bạn chứng minh bằng quy nạp á
cái này cũng dễ
chỉ cần tính theo công thức
quy nạp là sẽ đc