K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2016

Gọi A = 1/1.6 + 1/6.11 +...+ 1/(5n+1)(5n+6) 

5A = 5/1.6 + 5/6.11 + ... + 5/(5n+1)(5n+6)

     =1 - 1/6 + 1/6 - 1/11 + ... + 1/5n+1 - 1/5n+6 

    =1 - 1/5n+6 =5n+6/5n+6 - 1/5n+6=5n+5 /5n+6

29 tháng 4 2016

tôi không hiểu???

3 tháng 4 2016

1/1x2x3+1/2x3x4+...1/118x19x20<1/4 <--- cái này đề sai ở 1/118x19x20 phải là 1/18x19x20

12 tháng 3 2015

mình trả lời bài 1 thôi nhé :

Gọi biểu thức trên là A.

Theo bài ra ta có:A=1/1.6+1/6.11+1/11.16+...+1/(5n+1)+1/(5n+6)

                           =1/5(1-1/6+1/6-1/11+1/11-1/16+...+1/5n+1-1/5n+6)

                           =1/5(1-1/5n+6)

                           =1/5( 5n+6/5n+6-1/5n+6)

                           =1/5(5n+6-1/5n+6)

                           =1/5.5n+5/5n+6

                           =n+1/5n+6

                           =ĐIỀU PHẢI CHỨNG MINH

 

30 tháng 4 2015

x- 20/11.13 - 20/13.15 - 20/13.15 - 20/15.17 -...- 20/53.55=3/11

x-10.(2/11.13+2/13.15+2/15.17+...+2/53.55=3/11

x-10.(1/11-1/13+1/13-1/15+1/15-1/17+...+1/53-1/55)=3/11

x-10.(1/11-1/55)=3/11

x-10.4/55=3/11

x-8/11=3/11

x = 3/11+8/11

x=11/11=1

****

9 tháng 4 2015

Ta có:

\(\frac{1}{1.6}+\frac{1}{6.11}+...+\frac{1}{\left(5n+1\right)\left(5n+6\right)}=\frac{1}{5}\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{5n+1}-\frac{1}{5n+6}\right)\)

\(=\frac{1}{5}\left(\frac{1}{1}-\frac{1}{5n+6}\right)=\frac{1}{5}\left(\frac{5n+6}{5n+6}-\frac{1}{5n+6}\right)=\frac{1}{5}.\frac{5n+5}{5n+6}=\frac{1}{5}.\frac{5\left(n+1\right)}{5n+6}=\frac{5\left(n+1\right)}{5\left(5n+6\right)}=\frac{n+1}{5n+6}\)(ĐPCM)

11 tháng 3 2019

bạn Phạm Thiết Tường ơi ch mình hỏi sao lại nhân \(\frac{1}{5}\)với \(\frac{1}{1}-\frac{1}{5n+6}\)vậy

\(VT=\dfrac{1}{5}\left(\dfrac{5}{1\cdot6}+\dfrac{5}{6\cdot11}+...+\dfrac{5}{\left(5n+1\right)\left(5n+6\right)}\right)\)

\(=\dfrac{1}{5}\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-...+\dfrac{1}{5n+1}-\dfrac{1}{5n+6}\right)\)

\(=\dfrac{1}{5}\left(1-\dfrac{1}{5n+6}\right)\)

\(=\dfrac{1}{5}\cdot\dfrac{5n+6-1}{5n+6}\)

\(=\dfrac{n+1}{5n+6}=VP\)

AH
Akai Haruma
Giáo viên
21 tháng 10 2024

Lời giải:

$A=\frac{1}{1.6}+\frac{1}{6.11}+....+\frac{1}{(5n+1)(5n+6)}$

$5A=\frac{6-1}{1.6}+\frac{11-6}{6.11}+....+\frac{(5n+6)-(5n+1)}{(5n+1)(5n+6)}$

$5A=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+....+\frac{1}{5n+1}-\frac{1}{5n+6}$

$=1-\frac{1}{5n+6}=\frac{5n+5}{5n+6}$

$\Rightarrow A=\frac{n+1}{5n+6}$