Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
......................?
mik ko biết
mong bn thông cảm
nha ................
Gọi phương trình đã cho là f(x)
Giả sử x = t là nghiệm hữu tỷ của f(x) thì: f(x) = (x - t)Q(x)
f(0) = a0 = - t.Q(x) (1)
Và f(1) = a2k + a2k-1 + ... + a1 + a0 = (1 - t).Q(x) (2)
Từ (1) ta có a0 là số lẻ nên t phải là số lẻ
Từ (2) ta thấy rằng a2k + a2k-1 + ... + a1 + a0 là tổng của 2k + 1 số lẻ nên là số lẻ. Từ đó ta thấy rằng (1 - t) là số lẻ
Mà (1 - t) là hiệu hai số lẻ nên không thể là số lẻ (mâu thuẫn)
Vậy f(x) không có nghiệm nguyên
Đặt \(n^2-n+2=a^2\left(a\in N\right)\)
\(\Rightarrow4n^2-4n+8=\left(2a\right)^2\)
\(\Rightarrow\left(2n-1\right)^2+7=\left(2a\right)^2\)
\(\Rightarrow7=\left(2a-2n+1\right)\left(2a+2n-1\right)\)
Vì \(2a+2n-1>2a-2n+1;2a+2n-1>0\) (vì n thuộc N*)
\(\Rightarrow\hept{\begin{cases}2a+2n-1=7\\2a-2n+1=1\end{cases}\Rightarrow4n-2=6\Rightarrow}n=2\)
Vậy n=2 thì ...
Bài 2.
\(n^4-2n^3-n^2+2n=n\left(n^3-2n^2-n+2\right)=n\left[n^2\left(n-2\right)-\left(n-2\right)\right]\)
\(=n\left(n-2\right)\left(n^2-1\right)=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\)
là tích của \(4\)số nguyên liên tiếp nên trong đó có ít nhất \(1\)thừa số chia hết cho \(4\), \(1\)thừa số chia hết cho \(3\), \(1\)thừa số chia hết cho \(2\)nhưng không chia hết cho \(4\)
do đó \(A\)chia hết cho \(2.3.4=24\).
Ta có đpcm.
Bài 1:
\(2-x=2\left(x-2\right)^3\)
\(\Leftrightarrow\left(x-2\right)\left[2\left(x-2\right)^2-1\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\2\left(x-2\right)^2=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=\pm\sqrt{\frac{1}{2}}+2\end{cases}}\)
n3 - n
= n ( n2 - 1)
= ( n - 1 ) n (n + 1)
Đây la tích ba số nguyen liên tiep nen chia het cho 6 voi moi so nguyen n
Nhớ ủg hộ mk nha pn
Ta có
x4 - 4x3 - 4x2 + 16 = (x - 4)(x - 2)x(x + 2)
Đây là tích của 4 số chẵn liên tiếp
Trong 4 số chẵn liên tiếp sẽ có 1 số chia hết cho 2, 1 số chia hết cho 4, 1 số chia hết cho 6, 1 số chia hết cho 8
Vậy số đó chia hết cho 2×4×6×8 = 384
Ta có
x4 + 2x3 - x2 - 2x = (x - 1)x(x + 1)(x + 2)
Trong bốn số liên tiếp có 2 số chẵn trong 2 số chẵn đó có 1 số chia hết cho 2 và 1 số chia hết cho 4 nên nó chia hết cho 8
Trong 4 số liên tiếp có 1 số chia hết cho 3
Mà 8 và 3 nguyên tố cùng nhau nên nó chia hết cho 24
Nếu n lẻ thì n^3 và n là số lẻ
=> n^3 + n + 2 là số chẵn mà n lớn hơn hoặc bằng 1
=> n^3 + n + 2 là hợp số (1)
Nếu n chẵn thì n^3 và n là số chẵn
=> n^3 + n+2 là hợp số (2)
Từ (1) và (2) => n^3+n+2 là hợp số (đpcm!)