Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
$a\vdots b, b\vdots a$ và $a,b\neq 0$ nên $|a|\geq |b|, |b|\geq |a|$
$\Rightarrow |a|=|b|$
$\Rightarrow a=\pm b$
Ta có đpcm.
2/
Áp dụng kết quả của bài 1, ta suy ra $n+5=n+1$ hoặc $n+5=-(n+1)$
Nếu $n+5=n+1$
$\Leftrightarrow 5=1$ (vô lý)
Nếu $n+5=-(n+1)$
$\Rightarrow 2n+6=0$
$\Rightarrow 2n=-6$
$\Rightarrow n=-3$
4a2+3ab-11b2 chia hết cho 5 \(\left(5a^2+5ab-10b^2\right)-\left(4a^2+3ab-11b^2\right)\) chia hết cho 5
a2 + 2ab + b2 chia hết cho 5
( a + b )2 chia hết cho 5
a + b chia hết cho 5 (vì 5 là số nguyên tố)
a4 - b4 = a2 + b2 (a + b) (a - b) chia hết cho 5
4a2+3ab-11b2 chia hết cho 5
\(\left(4a^2+3ab-11b^2\right)⋮5\)
\(\Leftrightarrow5\left(a^2+ab-2b^2\right)-\left(4a^2+3ab-11b^2\right)⋮5\)
\(\Leftrightarrow\left(a^2+2ab+b^2\right)⋮5\)
\(\Leftrightarrow a+b⋮5\)
\(\Rightarrow a^4-b^4=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)⋮5\)
Giả sử a.b không chia hết cho 5
Ta có: a.b không chia hết cho 5
=> a và b không thể nào là số chia hết cho 5
=> a hoặc b cũng không thể là số chia hết cho 5
=> a.b chia hết cho 5 thì 1 trong 2 số phải chia hết cho 5 ĐPCM