Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Xét $n$ lẻ. Đặt $n=2k+1$ với $k$ tự nhiên.
Khi đó:
$3^n+4=3^{2k+1}+4\equiv (-1)^{2k+1}+4\equiv -1+4\equiv 3\pmod 4$
Xét $n$ chẵn. Đặt $n=2k$ với $k$ tự nhiên.
$3^n+4=3^{2k}+4=9^k+4\equiv 1^k+4\equiv 5\pmod 8$
Vậy $3^n+4$ chia $4$ dư $3$ hoặc chia $8$ dư $5$ với mọi $n$ tự nhiên.
$\Rightarrow 3^n+4$ không thể là số chính phương (do 1 scp chia 8 chỉ có thể có dư 0,1,4 và chia 4 chỉ có dư 0,1).
a) Nếu n là số chính phương lẻ thì n = (2k + 1)2 = 4k2 + 4k + 1 = 4k(k+1) + 1
Ta thấy ngay k(k + 1) chia hết cho 2, vậy thì 4k(k + 1) chia hết cho 8.
Vậy n chia 8 dư 1.
b) Em tham khảo tại link dưới đây nhé.
Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath
đề bài là như vậy phải ko: Chứng minh rằng với n là số tự nhiên lẻ thì n3+1 không thể là số chính phương?
giả sử
n^3 +1 = a^2 , a là số tự nhiên
=>n>a>0
=>n lớn hơn hoặc bằng a+1
=> a^2 = n^3 +1 lớn hơn hoặc bằng (a+1)^3 +1
=>a^3 + 2a^2 +3a +2 nhỏ hơn hoặc bằng không
=> a=0
=> n= -1 vô lí
=> đpcm
Ko hiểu, tại sao n>a vậy. Thấy từ dòng n^3+1=a^2 => n>a ko thấy hợp lí cho lắm vì n với a chả có mối quan hệ nào cả, nếu n=1 thì a=căn2, vậy a>n mới đúng chứ
mày chả vào đc