K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2017

a​2(b-c)+b​2(c-a)+c​2(a-b)=0

\(\Leftrightarrow\)(x-y)(z-x)(z-y)=0

Vậy trong 3 số a, b, c tồn tại 2 số bằng nhau 

13 tháng 1 2017

Khó hiểu quá

Bạn giải rõ giúp mình với ! 

17 tháng 9 2018

Ko mat tinh tong quat: \(a\ge b\ge c\)

\(a^2\left(a-b\right)+b^2\left(a-c\right)+c^2\left(a-b\right)=0\)

\(VT\ge a^2\left(b-b\right)+b^2\left(c-c\right)+c^2\left(a-b\right)\)

\(VT\ge0+0+c^2\left(a-b\right)\)

\(c^2\left(a-b\right)\ge0\) (a>=b)

\(VT\ge0\).Dấu bằng khi ít nhất 2 số bằng nhau (a=b hoặc a=c)

TUong tu voi cac cach gs khac

3 tháng 11 2015

bài 2

a2(b-c)+b2(c-a)+c2(a-b)=a2b-a2c+b2c-b2a+c2a-c2b=b(a2-c2)+ac(a-c)-b2(a-c)=(a-c)(ab-bc+ac-b2)=(a-c)(c-b)(a-b)=0

=>a-c=0 hoặc c-b=0 hoặc a-b=0

=>c=a hoặc c=b hoặc a=b

=>đpcm

nhớ tick vs nha

21 tháng 7 2021

a) Ta có x + y + z = 0

=> x + y = -z

=> (x + y)3 = (-z)3

=> x3 + y3 + 3xy(x + y) = -z3

=> x3 + y3 + z3 = -3xy(x + y) 

=> x3 + y3 + z3 = -3xy(-z)

=> x3 + y3 + z3 = 3xyz (đpcm) 

1. Rút gọn các biểu thức sau: a. A = 1002 - 992+ 982 - 972 + ... + 22 - 12 b. B = 3(22 + 1) (24 + 1) ... (264 + 1) + 12 c. C = (a + b + c)2 + (a + b - c)2 - 2(a + b)2 2. Chứng minh rằng: a. a3 + b3 = (a + b)3 - 3ab (a + b) b. a3 + b3 + c3 - 3abc = (a + b + c) (a2 + b2 c2 - ab - bc - ca) Suy ra các kết quả: i. Nếu a3 + b3 + c3 = 3abc thì a + b + c = 0 hoặc a = b = c 3. Tìm giá trị nhỏ nhất của các biểu thức a. A = 4x2 + 4x + 11 b. B = (x - 1) (x...
Đọc tiếp

1. Rút gọn các biểu thức sau:

a. A = 1002 - 992+ 982 - 972 + ... + 22 - 12

b. B = 3(22 + 1) (24 + 1) ... (264 + 1) + 12

c. C = (a + b + c)2 + (a + b - c)2 - 2(a + b)2

2. Chứng minh rằng:

a. a3 + b3 = (a + b)3 - 3ab (a + b)

b. a3 + b3 + c3 - 3abc = (a + b + c) (a2 + b2 c2 - ab - bc - ca)

Suy ra các kết quả:

i. Nếu a3 + b3 + c3 = 3abc thì a + b + c = 0 hoặc a = b = c

Bài tập toán nâng cao lớp 8

3. Tìm giá trị nhỏ nhất của các biểu thức

a. A = 4x2 + 4x + 11

b. B = (x - 1) (x + 2) (x + 3) (x + 6)

c. C = x2 - 2x + y2 - 4y + 7

4. Tìm giá trị lớn nhất của các biểu thức

a. A = 5 - 8x - x2

b. B = 5 - x2 + 2x - 4y2 - 4y

5. a. Cho a2 + b2 + c2 = ab + bc + ca chứng minh rằng a = b = c

b. Tìm a, b, c biết a2 - 2a + b2 + 4b + 4c2 - 4c + 6 = 0

6. Chứng minh rằng:

a. x2 + xy + y2 + 1 > 0 với mọi x, y

b. x2 + 4y2 + z2 - 2x - 6z + 8y + 15 > 0 Với mọi x, y, z

7. Chứng minh rằng:

x2 + 5y2 + 2x - 4xy - 10y + 14 > 0 với mọi x, y.

8. Tổng ba số bằng 9, tổng bình phương của chúng bằng 53. Tính tổng các tích của hai số trong ba số ấy.

9. Chứng minh tổng các lập phương của ba số nguyên liên tiếp thì chia hết cho 9.

10. Rút gọn biểu thức:

A = (3 + 1) (32 + 1) (34 + 1) ... (364 + 1)

11. a. Chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó thì tích của chúng có thể viết dưới dạng tổng hai bình phương.

b. Chứng minh rằng tổng các bình phương của k số nguyên liên tiếp (k = 3, 4, 5) không là số chính phương.

2
31 tháng 10 2017

1) a) \(A=100^2-99^2+98^2-97^2+....+2^2-1^2\)

\(=\left(100-99\right)\left(100+99\right)+\left(99-98\right)\left(99+98\right)+....\left(2-1\right)\left(2+1\right)\)

\(=100+99+98+.....+2+1\)

\(=\dfrac{100.101}{2}=5050\)

2) a) \(VP=\left(a+b\right)^3-3ab\left(a+b\right)\)

\(=a^3+b^3+3a^2b+3ab^2-3a^2b+3ab^2=a^3+b^3=VT\)

b) \(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3a^2b+3ab^2+c^3-3abc\)

\(=\left[\left(a+b\right)^3+c^3\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(=\dfrac{1}{2}\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2bc-2ca\right)\)

\(=\dfrac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\)Khi \(a^3+b^3+c^3=3abc\) \(\Rightarrow\)
\(\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)

i.i \(A=\dfrac{bc}{a^2}+\dfrac{ca}{b^2}+\dfrac{ab}{c^2}=abc\left(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\right)=abc.\dfrac{3}{abc}=3\)iii. \(a^3+b^3+c^3=3abc\Rightarrow\)
\(\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)

TH1: a=b=c

\(B=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

TH2: a+b+c=0

\(B=\left(\dfrac{a+b}{b}\right)\left(\dfrac{b+c}{c}\right)\left(\dfrac{a+c}{a}\right)=\dfrac{-c}{b}.\dfrac{-a}{c}.\dfrac{-b}{a}=-1\)

6 tháng 1 2018

chép trên vn doc àgianroi

AH
Akai Haruma
Giáo viên
25 tháng 2 2019

Lời giải:
\(a^4+b^4+c^4< 2(a^2b^2+b^2c^2+c^2a^2)\)

\(\Leftrightarrow a^4+b^4+c^4-2a^2b^2-2b^2c^2-2a^2c^2< 0\)

\(\Leftrightarrow (a^4+b^4+2a^2b^2)-4a^2b^2+c^4-(2b^2c^2+2c^2a^2)< 0\)

\(\Leftrightarrow (a^2+b^2)^2-2c^2(a^2+b^2)+c^4-4a^2b^2< 0\)

\(\Leftrightarrow (a^2+b^2-c^2)^2-(2ab)^2< 0\)

\(\Leftrightarrow (a^2+b^2-c^2-2ab)(a^2+b^2-c^2+2ab)< 0\)

\(\Leftrightarrow [(a-b)^2-c^2][(a+b)^2-c^2]< 0\)

\(\Leftrightarrow (a-b+c)(a-b-c)(a+b-c)(a+b+c)< 0\)

\(\Leftrightarrow (a+c-b)(b+c-a)(a+b-c)>0\)

Từ đây ta thấy có 2 TH xảy ra

TH1: cả 3 thừa số \(a+c-b, b+c-a, a+b-c\) đều dương

\(\Rightarrow a+b>c; b+c>a; c+a>b\) nên $a,b,c$ có thể là độ dài của $3$ cạnh tam giác

TH2: Trong 3 thừa số có một thừa số dương, 2 thừa số âm. Không mất tổng quát, giả sử:

\(\left\{\begin{matrix} a+c-b>0\\ b+c-a< 0\\ a+b-c< 0\end{matrix}\right.\Rightarrow (b+c-a)+(a+b-c)< 0\)

\(\Rightarrow 2b< 0\Rightarrow b< 0\) (trái với đề bài- loại)

Vậy tồn tại tam giác có độ dài các cạnh là $a,b,c$

25 tháng 2 2019

Tại sao

(a+c-b ) (b+c -a ) (a+b -c)>0