Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A = (2 + 22 + 23) + (24 + 25 + 26) + ..........+ (258 + 259 + 260)
= 2 . (1 + 2 + 4 ) + 24.(1+2+4) + ....... + 258.(1+2+4)
= 2.7 + 24.7 + .........+258.7
= 7.(2+24+.....+258)
Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.
Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2
\(\Rightarrow\) ĐPCM
A = 21 + 22 + 23 + ..... + 259 + 260
A = ( 21 + 22 + 23 ) + ... + ( 258 + 259 + 260 )
A = 21 . ( 1 + 2 + 22 ) + ... + 258 . ( 1 + 2 + 22 )
A = 21 . 7 + ... + 258 . 7 \(⋮\)7
Vậy A \(⋮\) 7
A= (21+22+23)+(24+25+26)+...+(258+259+260)
=20(21+22+23)+23(21+22+23)+...+257(21+22+23)
=(21+22+23)(20+23+...+257)
= 14(20+23+...+257) chia hết cho 7
Vậy A chia hết cho 7
gọi 1/41+1/42+1/43+...+1/80=S
ta có :
S>1/60+1/60+1/60+...+1/60
S>1/60 x 40
S>8/12>7/12
Vậy S>7/12
\(A=2^1+2^2+2^3+...+2^{60}\)
\(=\left(2^1+2^2+2^3\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(=\left(2.1+2.2+2.2^2\right)+...+\left(2^{58}.1+2^{58}.2+2^{58}.2^2\right)\)
\(=2.\left(1+2+4\right)+...+2^{58}.\left(1+2+4\right)\)
\(=2.7+...+2^{58}.7\)
\(=\left(2+2^{58}\right).7⋮7\)hay \(A⋮7\)
A=(2+2^2)+(2^3+2^4)+...+(2^59+2^60)
A=2.(1+2+2^2)+...+2^58(1+2+2^2)
A=2.7+...+2^58.7
A=7(2+2^4+....+2^58) chia hết cho 7
vậy...
=(2+22)+(23+24+25)+...+(258+259+260)
=6+23(2+4)+...+258(2+4)
=6+23.6+...+258.6
=6(1+23+...+258)
=> Tổng đó chia hết cho 6
Đặt A = 2 + 22 + 23 + 24 + ... + 258 + 259
A = 2.(1 + 2 + 22 + 23 + ... + 258 + 259)
Vì 2 chia hết cho 2 => A chia hết cho 2
A = 2 + 22 + 23 + 24 + ... + 259 + 260
A = (2 + 22) + (23 + 24) + ... + (259 + 260)
A = 2.(1 + 2) + 23.(1 + 2) + ... + 259.(1 + 2)
A = 2.3 + 23.3 + ... + 259.3
A = 3.(2 + 23 + ... + 259)
Vì 3 chia hết cho 3 => A chia hết cho 3
Vì A chia hết cho 2 và 3 mà ƯCLN(2,3) = 1 => A chia hết cho 2.3 = 6
=> A chia hết cho 6
=> 2 + 22 + 23 + 24 + ... + 259 + 260 chia hết cho 6
A = 2 + 22 + 23 + 24 + ... + 259 + 260
A = (2 + 22) + (23 + 24) + ... + (259 + 260)
A = 6 + 22.(2 + 22) + ... + 258.(2 + 22)
A = 6 + 22.6 + ... + 258.6
A = 6.(1 + 22 + ...+ 258)
Vì 6 chia hết cho 6 => 6.(1 + 22 + ... + 258) chia hết cho 6 => A chia hết cho 6
A=2^1+2^2+...+2^60
=(2^1+2^2+2^3)+(2^4+2^5+2^6)+(2^7+2^8+2^...
= ( 2^1+2^2+2^3)*(2^0+2^3+2^6+...+2^57)
= 14*(2^0+2^3+2^6+...+2^57) chia het cho 7
ko bt đúng hay sai nx!!
\(A=2^1+2^2+2^3+2^4+...+2^{59}+2^{60}\)
\(\Rightarrow A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(\Rightarrow A=2^1\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(\Rightarrow A=2^1\cdot7+2^4\cdot7+...+2^{58}\cdot7\)
\(\Rightarrow A=7\cdot\left(2^1+2^4+...+2^{58}\right)\)
\(\Rightarrow A⋮7\)
Giải:
\(A=\text{( }2^1+2^2+2^3\text{)}+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(A=2^1.\left(1+2+2^2\right)+2^4.\left(1+2+2^2\right)+...+2^{58}.\left(1+2+2^2\right)\)
\(A=2.7+2^4.7+...+2^{58}.7\)
\(A=7.\left(2+2^4+2^{58}\right)⋮7\)
\(\Rightarrow A=2^1+2^2+2^3+2^4+....+2^{59}+2^{60}\) chia hết cho \(7\)
\(\Rightarrow A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+....+\left(2^{58}+2^{59}+2^{60}\right)\)
\(\Rightarrow A=2^1\left(1+2+4\right)+2^4\left(1+2+4\right)+...+2^{58}\left(1+2+4\right)\)
\(\Rightarrow A=2^1.7+2^4.7+...+2^{58}.7\)
\(\Rightarrow A=7\left(2^1+2^4+...+2^{58}\right)\)
\(\Rightarrow\)A chia hết cho 7 vì tích có chứ thừa số 7
Vậy A chia hết cho 7