K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2016

theo tớ thì có đó 

 bạn thử tìm coi

    Đ/s : có  tồn tại n thỏa mãn điều kiện 

28 tháng 2 2017

+) k = 0 (TM đề bài)

+) k > 0

Xét dãy các bội của 189 gồm 1891; 1892; 1893; ...; \(189^{10^5+1}\)

Ta đã biết 1 số tự nhiên khi chia cho 105 chỉ có thể có 105 loại số dư (0;1;2;...;105-1) mà dãy trên gồm 105 + 1 số nên có ít nhất 2 số cùng dư khi chia cho 105

Giả sử 2 số đó là 189m và 189n trong đó m > n; m;n\(\in\)N*

\(\Rightarrow189^m-189^n⋮10^5\)

\(\Rightarrow189^n\left(189^{m-n}-1\right)⋮10^5\)

Mà (189n;105)=1 do (189;105)=1 nên 189m-n - 1 \(⋮10^5\)

Ta có đpcm

28 tháng 2 2017

Em thường ngày ăn ở tốt mà nhỉ =.=''

@SP......@Sp

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2...
Đọc tiếp

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố

2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố

3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương

4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p

5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab  +c ( a + b )

Chứng minh: 8c + 1 là số cp

6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3

Chứng minh: 9x – 1 là lập phương đúng

7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c

8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1

Chứng minh: ( x + y )^2 + ( xy – 1 )^2  không phải là số cp

9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2

10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương

11, Cho các số nguyên n thuộc Z, CM:

A = n^5 - 5n^3 + 4n \(⋮\)30

B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ

C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42

0
20 tháng 11 2019

Ta có : 

\(4m^2+m=5n^2+n\)

\(\Leftrightarrow5m^2+m=5n^2+n+m^2\)

\(\Leftrightarrow5\left(m^2-n^2\right)+\left(m-n\right)=m^2\)

\(\Leftrightarrow\left(m-n\right)\left(5m+5n+1\right)=m^2\)

\(\Rightarrow\hept{\begin{cases}m-n⋮d\\5m+5n+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}m^2=\left(m-n\right)\left(5m+5n+1\right)⋮d^2\\5\left(m-n\right)\left(5m+5n+1\right)⋮d\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}m⋮d\\10m+1⋮d\end{cases}\Rightarrow1⋮d\Rightarrow d=1}\)

Vậy \(m-n,5m+5n+1\) nguyên tố cùng nhau . Mà tích của chúng là một số chính phương nên bản thân \(m-n,5m+5n+1\) cũng là số chính phương ( đpcm)

Chúc bạn học tốt !!!

NV
7 tháng 4 2019

\(a^3+11a=a\left(a^2+11\right)\)

Nếu \(a=3k+1\Rightarrow a^2+11=9k^2+6k+12⋮3\)

Nếu \(a=3k+2\Rightarrow a^2+11=9k^2+12k+15⋮3\)

\(\Rightarrow\left(a^3+11a\right)⋮3\) \(\forall a\in Z\) (1)

Mặt khác ta có:

\(2017\equiv1\left(mod3\right)\Rightarrow2017^{2017}\equiv1\left(mod3\right)\)

\(\Rightarrow\left(2017^{2017}+1\right)\equiv2\left(mod3\right)\)

\(\Rightarrow\left(2017^{2017}+1\right)⋮̸3\) (2)

Từ (1), (2) \(\Rightarrow\left(2017^{2017}+1\right)⋮̸\left(a^3+11a\right)\) \(\forall a\in Z\)

NV
13 tháng 4 2019

\(n^3+2012n=n\left(n^2+2012\right)\)

- Nếu \(n=3k\Rightarrow\left(n^3+2012n\right)⋮3\)

- Nếu \(n=3k+1\Rightarrow n^2+2012=9k^2+6k+2013⋮3\)

\(\Rightarrow\left(n^3+2012n\right)⋮3\)

- Nếu \(n=3k+2\Rightarrow n^2+2012=9k^2+12k+2016⋮3\)

\(\Rightarrow\left(n^3+2012n\right)⋮3\)

\(\Rightarrow\left(n^3+2012n\right)⋮3\) \(\forall n\in Z\) (1)

Mặt khác ta có:

\(2014\equiv1\left(mod3\right)\Rightarrow2014^{2014}\equiv1\left(mod3\right)\)

\(\Rightarrow2014^{2014}+1\equiv2\left(mod3\right)\Rightarrow\left(2014^{2014}+1\right)⋮̸3\) (2)

Từ (1) và (2) suy ra điều phải chứng minh

3 tháng 9 2021

4m2+m=5n2+n

{=}5m2+m=5n2+n+m2

{=}5(m2-n2)+(m-n)=m2

{=}(m-n)(5m+5n+1)=m2

3 tháng 9 2021

là sao

20 tháng 7 2020

Ta có: xy = ab <=> \(\frac{x}{a}=\frac{b}{y}\)(a; y \(\ne\)0)

Đặt \(\frac{x}{a}=\frac{b}{y}=k\) => \(\hept{\begin{cases}x=ak\\b=yk\end{cases}}\)(*)

Khi đó: x + y = a + b <=> ak + y = a + yk

<=> ak - a + y - yk = 0

<=> a(k - 1) - y(k - 1) = 0

<=> (a - y)(k - 1) = 0

<=> \(\orbr{\begin{cases}a=y\\k=1\end{cases}}\)

Với a = y => b = x

<=> an = yn  (1) và bn = x(2) (x \(\in\)N)

Từ (1) và (2) cộng vế theo vế : an + bn = yn + xn

Với k = 1 thay vào (*) => \(\hept{\begin{cases}x=a\\b=y\end{cases}}\) <=> \(\hept{\begin{cases}x^n=a^n\\y^n=b^n\end{cases}}\) => xn + yn = an + bn

=> đpcm