Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử \(_{\Delta ABC\approx\Delta DEM}\) theo tỷ số k và có 2 đường cao, 2 cạnh tương ứng là h,a ; h',a'
Ta có: \(\frac{\Delta ABC}{\Delta DEM}=\frac{ah}{2}\div\frac{a'h'}{2}=\frac{ah}{a'h'}=\frac{a}{a'}.\frac{h}{h'}=k.k=k^2\)
=> ĐPCM
hình 49
Sabc=1/2ah.bc
Sa'b'c'=1/2a'h'.b'c'
tính tỉ sô Sabc/Sa'b'c=ah.bc/a'h'.b'c'
tam giác abc đồng dạng với tam giác a'b'c' theo tỉ số đồng dạng k suy ra bc/b'c'=ah/a'h'=k
suy ra Sabc/Sa'b'c'=bc/b'c' . ah/a'h'=k.k=k^2
suy ra đpcm
Giả sử tam giác ABC đồng dạng với tam giác A′B′C′ theo tỷ số a có hai đường cao và hai cạnh tương ứng là b,c và b',c'
\(\Rightarrow\)\(\frac{b}{b'}=\frac{c}{c'}=a\)
Như vậy ta sẽ có\(\frac{S_{ABC}}{S_{A'B'C'}}\)\(=\frac{b.c}{b'.c'}\)\(=\frac{b}{b'}.\frac{c}{c'}\)\(=a.a\)\(=a^2\)
Vậy tỉ số diện tích của hai tam giác đồng dạng bằng bình phương tỉ số đồng dạng.
Tham khảo: Toán - [Lớp 8] Chứng minh tỉ số diện tích của hai tam giác đồng dạng thì bằng bình phương tỉ số đồng dạng. | Cộng đồng Học sinh Việt Nam - HOCMAI Forum
3
A C B H Có tam giác ABC đồng dạng với tam giác A'B'C'(gt)
Nên \(\dfrac{A'B'}{AB}=\dfrac{A'C'}{AC}=\dfrac{B'C'}{BC}=k\)
Xét tam giác A'B'H' và tam giác ABH có:
góc A'H'B' = góc ABH (=90o)
góc A'B'H'= góc ABH (vì tam giác ABC đồng dạng với tam giác A'B'C')
Nên tam giác A'B'H' đồng dạng với tam giác ABH (g.g)
Do vậy \(\dfrac{A'H'}{AH}=\dfrac{A'B'}{AB}=k\)
2/
A B C M
Có tam giác ABC đồng dạng với tam giác A'B'C'(gt)
Nên \(\dfrac{A'B'}{AB}=\dfrac{A'C'}{AC}=\dfrac{B'C'}{BC}=k\) (1)
và \(\)góc B'A'M' = góc BAM \(\left(=\dfrac{1}{2}B'A'C'=\dfrac{1}{2}BAC\right)\) (2)
Xét tam giác A'B'M' và tam giác ABC có:
góc B'A'M' = góc BAM (từ 2)
góc A'B'M' = góc ABM (tam giác ABC đồng dạng với tam giác A'B'C')
Nên tam giác A'B'M' đồng dạng với tam giác ABM (g.g)
Do vậy \(\dfrac{A'M'}{AM}=\dfrac{A'B'}{AB}=k\) (từ 1)
3/
A B C M
Có tam giác ABC đồng dạng với tam giác A'B'C'(gt)
Nên \(\dfrac{A'B'}{AB}=\dfrac{B'C'}{BC}=\dfrac{\dfrac{B'C'}{2}}{\dfrac{BC}{2}}=\dfrac{B'M'}{BM}\) (1)
Xét tam giác A'B'M' và tam giác ABM có:
\(\dfrac{A'B'}{AB}=\dfrac{B'M'}{BM}\) (từ 1)
góc A'B'M' = góc ABM (tam giác ABC đồng dạng với tam giác A'B'C')
Nên tam giác A'B'M' đồng dạng với tam giác ABM (c.g.c)
Do vậy \(\dfrac{A'M'}{AM}=\dfrac{A'B'}{AB}=k\)
a) BE // DC => ∆BEF ∽ ∆CDF
AD // BF => ∆ADE ∽ ∆BFE.
Do đó: ∆ADE ∽ ∆CFD
b) BE = AB - AE = 12 - 8 = 4cm
∆ADE ∽ ∆BFE => \(\dfrac{AE}{BE}=\dfrac{AD}{BF}=\dfrac{DE}{FD}\)
=> \(\dfrac{8}{4}=\dfrac{7}{BF}=\dfrac{10}{EF}\)
=> BF = 3,5 cm.
EF = 5 cm.
Giả sử △ABC đồng dạng với △A′B′C′ thoeo tỷ số k có hai đường cao, hai cạnh tương ứng là h,avà h′;a′
Như vậy ta sẽ có: \(\dfrac{S_{ABC}}{S_{A'B'C'}}=\dfrac{ah}{a'h'}=\dfrac{a}{a'}\times\dfrac{h}{h'}=k.k=k^2\)
Nên ta có đpcm
Bạn không vẽ hình ra à?