K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 6 2020

Đúng như bạn viết vế trái là thế này:

\(\left(\frac{tan^2x}{1+tan^2x}\right)\left(\frac{1+cot^2x}{cotx}\right)=\left(\frac{1}{\frac{1}{tan^2x}+1}\right)\left(\frac{1+cot^2x}{cotx}\right)\)

\(=\left(\frac{1}{cot^2x+1}\right)\left(\frac{1+cot^2x}{cotx}\right)=\frac{1}{cotx}=tanx\)

Còn vế phải sẽ ra thế này:

\(\frac{1+tan^4x}{tan^2x+cot^2x}=\frac{1+tan^4x}{tan^2x+\frac{1}{tan^2x}}=\frac{tan^2x\left(1+tan^4x\right)}{tan^4x+1}=tan^2x\)

Hai vế ra kết quả khác nhau nên chắc bạn ghi sai đề :)

NV
22 tháng 2 2020

Do \(0< 18^0< 90^0\Rightarrow cos18^0=\sqrt{1-sin^218^0}=\frac{\sqrt{10+2\sqrt{5}}}{4}\)

\(sin72^0=sin\left(90^0-18^0\right)=cos18^0=...\)

\(sin162^0=sin\left(180^0-18^0\right)=sin18^0=...\)

\(sin108^0=sin\left(90^0+18^0\right)=cos18^0=...\)

\(cos108^0=cos\left(90^0+18^0\right)=-sin18^0=...\)

\(tan72^0=tan\left(90^0-18^0\right)=cot18^0=\frac{cos18^0}{sin18^0}=...\)

NV
27 tháng 3 2019

Giả sử các biểu thức đều xác định

a/

\(sinx.cotx+cosx.tanx=sinx.\frac{cosx}{sinx}+cosx.\frac{sinx}{cosx}=sinx+cosx\)

b/

\(\left(1+cosx\right)\left(sin^2x+cos^2x-cosx\right)=\left(1+cosx\right)\left(1-cosx\right)=1-cos^2x=sin^2x\)

c/

\(\frac{sinx+cosx}{cos^3x}=\frac{1}{cos^2x}\left(\frac{sinx+cosx}{cosx}\right)=\left(1+tan^2x\right)\left(tanx+1\right)=tan^3x+tan^2x+tanx+1\)

d/

\(tan^2x-sin^2x=\frac{sin^2x}{cos^2x}-sin^2x=sin^2x\left(\frac{1}{cos^2x}-1\right)\)

\(=sin^2x\left(\frac{1-cos^2x}{cos^2x}\right)=sin^2x.\frac{sin^2x}{cos^2x}=sin^2x.tan^2x\)

e/ \(cot^2x-cos^2x=\frac{cos^2x}{sin^2x}-cos^2x=cos^2x\left(\frac{1}{sin^2x}-1\right)=cos^2x\left(\frac{1-sin^2x}{sin^2x}\right)\)

\(=cos^2x.\frac{cos^2x}{sin^2x}=cos^2x.cot^2x\)

NV
14 tháng 4 2019

\(VT=tan^4x+cos^4x-2\left(tan^2x+cot^2x\right)+8\)

\(=\left(tan^2x+cot^2x\right)^2-2\left(tan^2x+cot^2x\right)+6\)

\(=\left(tan^2x+cot^2x-1\right)^2+5\)

Mặt khác áp dụng BĐT \(a^2+b^2\ge2ab\Rightarrow tan^2x+cot^2x\ge2\)

\(\Rightarrow\left(tan^2x+cot^2x-1\right)^2+5\ge\left(2-1\right)^2+5=6>5\Rightarrow VT>5\) (1)

Lại có \(3sinx-4cosx=5\left(sinx.\frac{3}{5}-cosx.\frac{4}{5}\right)\)

Do \(\left(\frac{3}{5}\right)^2+\left(\frac{4}{5}\right)^2=1\Rightarrow\) đặt \(\left\{{}\begin{matrix}\frac{3}{5}=cosa\\\frac{4}{5}=sina\end{matrix}\right.\)

\(\Rightarrow VP=3sinx-4cosx=5\left(sinx.cosa-cosx.sina\right)=5sin\left(x-a\right)\)

Do \(sin\left(x-a\right)\le1\Rightarrow5sin\left(x-a\right)\le5\Rightarrow VP\le5\) (2)

(1), (2) \(\Rightarrow VT>VP\)

AH
Akai Haruma
Giáo viên
26 tháng 10 2018

a)

\((\sin x+\cos x)^2=\sin ^2x+2\sin x\cos x+\cos ^2x\)

\(=(\sin ^2x+\cos ^2x)+2\sin x\cos x=1+2\sin x\cos x\)

b)

\(\sin ^4x+\cos ^4x=\sin ^4x+2\sin ^2x\cos ^2x+\cos ^4x-2\sin ^2\cos ^2x\)

\(=(\sin ^2x+\cos ^2x)^2-2\sin ^2x\cos ^2x\)

\(=1-2\sin ^2x\cos ^2x\)

c)

\(\tan ^2x-\sin ^2x=(\frac{\sin x}{\cos x})^2-\sin ^2x\)

\(=\sin ^2x\left(\frac{1}{\cos ^2x}-1\right)=\sin ^2x. \frac{1-\cos ^2x}{\cos ^2x}=\sin ^2x.\frac{\sin ^2x}{\cos ^2x}\)

\(=\sin ^2x\left(\frac{\sin x}{\cos x}\right)^2=\sin ^2x\tan ^2x\)

AH
Akai Haruma
Giáo viên
26 tháng 10 2018

d)

\(\sin ^6x+\cos ^6x=(\sin ^2x)^3+(\cos ^2x)^3\)

\(=(\sin ^2x+\cos ^2x)(\sin ^4x-\sin ^2x\cos ^2x+\cos ^4x)\)

\(=\sin ^4x-\sin ^2x\cos ^2x+\cos ^4x\)

\(=(\sin ^4x+\cos ^4x)-\sin ^2x\cos ^2x=1-2\sin ^2x\cos ^2x-\sin ^2x\cos ^2x\)

\(=1-3\sin ^2x\cos ^2x\) (theo kq phần b)

e)

\(\sin x\cos x(1+\tan x)(1+\cot x)=\sin x\cos x(1+\frac{\sin x}{\cos x})(1+\frac{\cos x}{\sin x})\)

\(=\sin x\cos x.\frac{\cos x+\sin x}{\cos x}.\frac{\sin x+\cos x}{\sin x}\)

\(=(\sin x+\cos x)^2=\sin ^2x+\cos ^2x+2\sin x\cos x\)

\(=1+2\sin x\cos x\)

-------------

P/s: Nói chung cứ bám vào công thức \(\sin ^2x+\cos ^2x=1\)

4 tháng 5 2019

Bấm máy tính được không ta

NV
5 tháng 5 2019

\(A=\frac{sin80}{cos80}\left(\frac{sin20}{cos20}+\frac{sin140}{cos140}\right)+\frac{sin140.sin20}{cos140.cos20}\)

\(=\frac{sin80}{cos80}\left(\frac{sin20.cos140+cos20.sin140}{cos20.cos140}\right)+\frac{\frac{1}{2}\left(cos120-cos160\right)}{cos20.cos140}\)

\(=\frac{sin80}{cos80}.\frac{sin160}{cos20.cos140}+\frac{cos120-cos160}{2cos20.cos140}\)

\(=\frac{2sin^280}{cos20.cos140}+\frac{cos120-cos160}{2cos20.cos140}=\frac{1-cos160}{cos20.cos140}+\frac{cos120-cos160}{2cos20.cos140}\)

\(=\frac{2-2cos160+cos120-cos160}{2cos20.cos140}=\frac{\frac{3}{2}-3cos160}{cos120+cos160}=\frac{-3\left(-\frac{1}{2}+cos160\right)}{-\frac{1}{2}+cos160}=-3\)

NV
3 tháng 5 2019

\(\left(1+tanx\right)cos^2x+\left(1+cotx\right)sin^2x\)

\(=cos^2x+cos^2x\frac{sinx}{cosx}+sin^2x+sin^2x\frac{cosx}{sinx}\)

\(=cos^2x+2sinx.cosx+sin^2x\)

\(=\left(sinx+cosx\right)^2\)