K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2018

Nếu để ý,bài này Cô si "ngược" là ra =))

Ta có: \(\sqrt{y-1}=\sqrt{1\left(y-1\right)}\le\frac{1+y-1}{2}=\frac{y}{2}\)

Tương tự: \(\sqrt{x-1}\le\frac{x}{2}\)

Do đó: \(x\sqrt{y-1}+y\sqrt{x-1}\le x.\frac{y}{2}+y.\frac{x}{2}=\frac{xy}{2}+\frac{xy}{2}=\frac{2xy}{2}=xy^{\left(đpcm\right)}\)

3 tháng 12 2018

"=" xảy ra <=> y-1=1 và x-1=1 <=> x=y=2 (thỏa mãn)

8 tháng 6 2015

\(\Leftrightarrow\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-1}}{y}\le1\)

Mà \(x=\left(x-1\right)+1\ge2\sqrt{x-1}\)

\(\Rightarrow\frac{\sqrt{x-1}}{x}\le\frac{\sqrt{x-1}}{2\sqrt{x-1}}=\frac{1}{2}\)

Tương tự: \(\frac{\sqrt{y-1}}{y}\le\frac{1}{2}\)

Vậy \(\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-1}}{y}\le1\left(đpcm\right)\)

4 tháng 11 2017

Ban kia lam dung roi do

k tui nha

thanks

19 tháng 8 2015

Theo bất đẳng thức  Cô-Si ta có \(xy=\left(x-1\right)y+y\ge2\sqrt{\left(x-1\right)y\cdot y}=2y\sqrt{x-1}.\)

Tương tự  \(xy=\left(y-1\right)x+x\ge2\sqrt{\left(y-1\right)x\cdot x}=2x\sqrt{y-1}.\)

Cộng hai bất đẳng thức lại cho ta \(2xy\ge2y\sqrt{x-1}+2x\sqrt{y-1}\Leftrightarrow xy\ge x\sqrt{y-1}+y\sqrt{x-1}.\)  (ĐPCM).

12 tháng 11 2018

\(P=\left(\dfrac{\sqrt{x}-\sqrt{y}}{1+\sqrt{xy}}+\dfrac{\sqrt{x}+\sqrt{y}}{1-\sqrt{xy}}\right):\left(\dfrac{x+y+2xy}{1-xy}+1\right)\)

Điều kiện : \(xy\ge0\) hoặc \(xy\le0\) ; \(xy\ne1\); \(x\ge0\);\(y\ge0\)

\(P=\left(\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(1-\sqrt{xy}\right)+\left(\sqrt{x}+\sqrt{y}\right)\left(1+\sqrt{xy}\right)}{\left(1+\sqrt{xy}\right)\left(1-\sqrt{xy}\right)}\right):\left(\dfrac{x+2xy+y+1-xy}{1-xy}\right)\)

\(P=\left(\dfrac{\sqrt{x}-x\sqrt{y}-\sqrt{y}+y\sqrt{x}+\sqrt{x}+x\sqrt{y}+\sqrt{y}+y\sqrt{x}}{1-xy}\right):\left(\dfrac{x+xy+y+1}{1-xy}\right)\)

\(P=\left(\dfrac{2\sqrt{x}+2y\sqrt{x}}{1-xy}\right):\left(\dfrac{x\left(1+y\right)+\left(y+1\right)}{1-xy}\right)\)

\(P=\left(\dfrac{2\sqrt{x}\left(1+y\right)}{1-xy}\right):\left(\dfrac{\left(1+y\right)\left(x+1\right)}{1-xy}\right)\)

\(P=\dfrac{2\sqrt{x}\left(1+y\right)}{1-xy}.\dfrac{1-xy}{\left(1+y\right)\left(x+1\right)}\)

\(P=\dfrac{2\sqrt{x}}{x+1}\)

b) ta có :\(x=\dfrac{2}{2+\sqrt{3}}=\dfrac{2\left(2-\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}=\dfrac{4-2\sqrt{3}}{4-3}=3-2\sqrt{3}+1=\left(\sqrt{3}-1\right)^2\)

thay \(x=\left(\sqrt{3}-1\right)^2\) vào biểu thức P
ta được : \(P=\dfrac{2\sqrt{\left(\sqrt{3}-1\right)^2}}{\left(\sqrt{3}-1\right)^2+1}\)

\(P=\dfrac{2\left|\sqrt{3}-1\right|}{4-2\sqrt{3}+1}=\dfrac{2\sqrt{3}-2}{5-2\sqrt{3}}\)

\(P=\dfrac{\left(2\sqrt{3}-2\right)\left(5+2\sqrt{3}\right)}{\left(5-2\sqrt{3}\right)\left(5+2\sqrt{3}\right)}=\dfrac{10\sqrt{3}+12-10-4\sqrt{3}}{25-12}\)

\(P=\dfrac{6\sqrt{3}+2}{13}\)

c) để P\(\le\)1 thì \(\dfrac{2\sqrt{x}}{x+1}\le1\)

\(\Leftrightarrow\dfrac{2\sqrt{x}}{x+1}-1\le0\)

\(\Leftrightarrow\dfrac{2\sqrt{x}-x-1}{x+1}\le0\)

\(\Leftrightarrow\dfrac{-\left(x-2\sqrt{x}+1\right)}{x+1}\le0\)

\(\Leftrightarrow\dfrac{-\left(x-1\right)^2}{x+1}\le0\)

\(-\left(x-1\right)^2\le0\) nên x + 1 \(\ge\) 0

\(\Leftrightarrow\) x \(\ge\) -1
đúng thì cho xin 1 like nha

AH
Akai Haruma
Giáo viên
28 tháng 7 2018

Lời giải:

Ta có:

\(\frac{x}{\sqrt{x^2+1}}+\frac{y}{\sqrt{y^2+1}}+\frac{z}{\sqrt{z^2+1}}\)

\(=\frac{x}{\sqrt{x^2+xy+yz+xz}}+\frac{y}{\sqrt{y^2+xy+yz+xz}}+\frac{z}{\sqrt{z^2+xy+yz+xz}}\)

\(=\frac{x}{\sqrt{(x+y)(x+z)}}+\frac{y}{\sqrt{(y+z)(y+x)}}+\frac{z}{\sqrt{(z+x)(z+y)}}\)

Áp dụng BĐT Cauchy:

\(\frac{x}{\sqrt{(x+y)(x+z)}}\leq \frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)

\(\frac{y}{\sqrt{(y+z)(y+x)}}\leq \frac{1}{2}\left(\frac{y}{y+z}+\frac{y}{y+x}\right)\)

\(\frac{z}{\sqrt{(z+x)(z+y)}}\leq \frac{1}{2}\left(\frac{z}{z+x}+\frac{z}{z+y}\right)\)

Cộng theo vế:

\(\frac{x}{\sqrt{(x+y)(x+z)}}+\frac{y}{\sqrt{(y+z)(y+x)}}+\frac{z}{\sqrt{(z+x)(z+y)}}\leq \frac{1}{2}\left(\frac{x+y}{x+y}+\frac{y+z}{y+z}+\frac{z+x}{z+x}\right)=\frac{3}{2}\)

Ta có đpcm

Dấu bằng xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)

11 tháng 7 2020

Đặt \(\left(a,b,c\right)=\left(\sqrt{x},\sqrt{y},\sqrt{z}\right)\).

Xét 4 số m, n, p, q. Ta sẽ chứng minh \(\left(m+n+p+q\right)^2\le4\left(m^2+n^2+p^2+q^2\right)\) (*)

Thật vậy:

(*) \(\Leftrightarrow2\left(mn+np+pq+qm+mp+nq\right)\le3\left(m^2+n^2+p^2+q^2\right)\)

\(\Leftrightarrow\left(m-n\right)^2+\left(n-p\right)^2+\left(p-q\right)^2+\left(q-m\right)^2+\left(m-p\right)^2+\left(n-q\right)^2\ge0\) (luôn đúng).

Từ đó: \(\left(\sqrt{x}+\sqrt{y}+2\sqrt{z}\right)^2=\left(\sqrt{x}+\sqrt{y}+\sqrt{z}+\sqrt{z}\right)^2\le4\left(x+y+z+z\right)=4\left(x+y+2z\right)\)

\(\Leftrightarrow\sqrt{x}+\sqrt{y}+2\sqrt{z}\le2\sqrt{x+y+2z}\)

\(\Leftrightarrow\sqrt{\frac{xy}{x+y+2z}}=\frac{\sqrt{xy}}{\sqrt{x+y+2z}}\le\frac{2\sqrt{x}\sqrt{y}}{\sqrt{x}+\sqrt{y}+2\sqrt{z}}=\frac{2ab}{a+b+2c}\le\frac{1}{2}ab\frac{4}{\left(a+c\right)+\left(b+c\right)}\le\frac{1}{2}ab\left(\frac{1}{a+c}+\frac{1}{b+c}\right)=\frac{1}{2}\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)\)

Tương tự, ta có:

\(\sum\sqrt{\frac{xy}{x+y+2z}}\le\frac{1}{2}\sum\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)=\frac{1}{2}\sum\left(\frac{ab}{a+c}+\frac{bc}{c+a}\right)=\frac{1}{2}\sum a=\frac{1}{2}\)

20 tháng 12 2015

Áp dụng bất đẳng thức Cô si ta có

\(\sqrt{y-1}=\sqrt{\left(y-1\right).1}\le\frac{y-1+1}{2}=\frac{y}{2}\)

=>\(x\sqrt{y-1}\le\frac{xy}{2}\)

Áp dụng BĐT cô si ta có

\(\sqrt{x-1}=\sqrt{\left(x-1\right).1}\le\frac{x-1+1}{2}=\frac{x}{2}\)

=>\(y\sqrt{x-1}+x\sqrt{y-1}\le\frac{xy}{2}+\frac{xy}{2}=xy\)

Dấu ''='' xảy ra <=>x=y=1

17 tháng 4 2017

hiu hiu

ai giúp giùm vs

17 tháng 4 2017

coooossssi bạn ơi

20 tháng 5 2017

Chỉnh lại đề \sqrt(x) + \sqrt(y)=1
bình phương x+y+2\sqrt(xy) = 1 đặt ( \sqrt(xy) ; x+y)= (a;b)
BĐT cần c/m <=> (ab)^2 <= (2a .b ) ^2 /4 <= ((2a+b)^2/4)^2/4 = 1/64 ĐPCM :))