Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{1+2+3+...+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}\\ =\sqrt{2\left[1+2+3+...+\left(n-1\right)+n\right]-n}\\ =\sqrt{2.\left(n+1\right).n:2-n}\\ =\sqrt{n\left(n+1\right)-n}\\ =\sqrt{n^2+n-n}\\ =\sqrt{n^2}\\ =n\)
Ta có:1+2+3+..+(n-1)
=>số số hạng của tổng trên là:\(\frac{\left(n-1\right)-1}{1}\) +1=n-2+1=n-1
vậy:1+2+3+..+(n-1)=[(n-1)+1].(n-1):2=n(n-1):2
=>\(\sqrt{1+2+3+...+\left(n-1\right)+n+\left(n-1\right)+..+3+2+1}\)
\(\sqrt{n\left(n-1\right):2.2+n}\)
\(\sqrt{n\left(n-1\right)+n}\)
\(\sqrt{n.n-n+n}\)
\(\sqrt{\sqrt{n}}\)=n
vậy\(\sqrt{1+2+3+...+\left(n-1\right)+n+\left(n-1\right)+..+3+2+1}\)
=n(dpcm)
Đề có cho n >=0 ko bạn?
\(\sqrt{1+2+3+....+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}\)
\(=\sqrt{2.\left[1+2+3+...+\left(n-1\right)\right]+n}=\sqrt{2.\frac{\left[\left(n-1\right)+1\right]\left(n-1\right)}{2}+n}\)
\(=\sqrt{\left(n-1+1\right)\left(n-1\right)+n}=\sqrt{n.\left(n-1\right)+n}=\sqrt{n^2-n+n}=n\)
Xét số hạng tổng quát \(\frac{n+1}{n}=1+\frac{1}{n}\) . Vì \(0<\frac{1}{n}<1\) nên \(1<1+\frac{1}{n}<2\) => \(\sqrt[n+1]{1}<\sqrt[n+1]{\frac{n+1}{n}}<\sqrt[n+1]{2}<\sqrt{2}\)
=> \(1<\sqrt[n+1]{\frac{n+1}{n}}<\sqrt{2}\approx1,41\) => phần nguyên các số có dạng \(\sqrt[n+1]{\frac{n+1}{n}}=1\)
A có n số hạng
Vậy A = \(\left[\sqrt{\frac{2}{1}}\right]+\left[\sqrt[3]{\frac{3}{2}}\right]+\left[\sqrt[4]{\frac{4}{3}}\right]+...+\left[\sqrt[n+1]{\frac{n+1}{n}}\right]=1+1+1+..+1=n\)
Ta có :
\(\sqrt{1+2+...+n-1+n+n-1+...+2+1}\)
=\(\sqrt{2\left(1+2+...+n-1\right)+n}\)
=\(\sqrt{\dfrac{2\left(n-1\right)n}{2}+n}=\sqrt{n^2}=n\)
Chúc Bạn Học Tốt ,Cô @Bùi Thị Vân kiểm tra giùm em với ạ