Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(S=\left(n+5\right)\left(n+6\right)=n^2+11n+30=n^2-n+30+12n\)
Do \(12n\) chia hết cho \(6n\) nên để \(S\) có thể chia hết cho \(6n\) thì \(n^2-n+30\) phải chia hết cho \(6n\)
\(\Leftrightarrow\) \(n\left(n-1\right)\) chia hết cho \(3\) \(\left(1\right)\) và \(30\) chia hết cho \(n\) \(\left(2\right)\)
Từ \(\left(1\right)\) \(\Rightarrow\) \(n=3k\) hoặc \(n=3k+1\) \(\left(k\in Z\right)\)
Từ \(\left(2\right)\) \(\Rightarrow\) \(n\inƯ\left(30\right)=\left\{1;2;3;5;6;10;15;30;-1;-2;-3;-5;-6;-10;-15;-30\right\}\)
Khi đó, để thỏa mãn đồng thời \(\left(1\right)\) và \(\left(2\right)\) thì .......................
\(A=n\left(n+2\right)\left(73n^2-1\right)=n\left(n+2\right)\left(n^2-1\right)+72n^3\left(n+2\right)=\)
\(=\left(n-1\right)n\left(n+1\right)\left(n+2\right)+72n^3\left(n+2\right)\)
Ta thấy n-1 , n , n+1, n+2 là tích 4 số tự nhiên liên tiếp nên có 2 số chẵn liên tiếp sẽ có tích chia hết cho 8
=> (n-1)n(n+1)(n+2) chia hết cho 8
Dễ dàng lập luận đc (n-1)n(n+1)(n+2) chia hết cho 3
mà (8,3)=1
=> (n-1)n(n+1)(n+2) chia hết cho 24
mà 72n^3(n+2) chia hết cho 24
=> A chia hết cho 24
câu 2
Ta có: P(0)=d =>d chia hết cho 5 (1) P(1)=a+b+c+d =>a+b+c chia hết cho 5 (2) P(-1)=-a+b-c+d chia hết cho 5 Cộng (1) với (2) ta có: 2b+2d chia hết cho 5 Mà d chia hết cho 5 =>2d chia hết cho 5 =>2b chia hết cho 5 =>b chia hết cho 5 P(2)=8a+4b+2c+d chia hết cho 5 =>8a+2c chia hết cho 5 ( vì 4b+d chia hết cho 5) =>6a+2a+2c chia hết cho 5 =>6a+2(a+c) chia hết cho 5 Mà a+c chia hết cho 5 (vì a+b+c chia hết cho 5, b chia hết cho 5) =>6a chia hết cho 5 =>a chia hết cho 5 =>c chia hết cho 5 Vậy a,b,c chia hết cho 5 cho mình 1tk nhé
1b)
Đặt 2014+n2=m2(m∈Z∈Z,m>n)
<=>m2-n2=2014<=>(m+n)(m-n)=2014
Nhận thấy:m và n phải cùng chẵn hoặc cùng lẻ
Suy ra m+n và m-n đều chẵn,m+n>m-n
Mà 2014=2.19.53=>m+n và m-n không cùng chẵn
=>không có giá trị nào thoả mãn
tk mình nhé
xét (2a+3b)(2b+3a)=\(4ab+6b^2+9ab+6a^2=6\left(a^2+b^2\right)+13ab\)
mặ khác ta có \(13ab⋮13\)\(a^2+b^2⋮13\left(gt\right)\Rightarrow6\left(a^2+b^2\right)⋮13\)\(\Rightarrow\left(2a+3b\right)\left(2b+3a\right)⋮13\)
\(\Rightarrow\)2a+3b hoặc 2b+3a chia hết cho 13
\(b,n^2\left(n^4-1\right)\)
\(=n^2\left(n^2+1\right)\left(n^2-1\right)\)
Ta có:\(n^2-1;n^2;n^2+1\) là 3 số nghuyên liên tiếp
\(\Rightarrow n^2\left(n^2+1\right)\left(n^2-1\right)⋮60\)
\(\Rightarrowđpcm\)
=>
giải câu c nha
xét hiệu:A= \(a^3+b^3+c^3-a-b-c=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)
Ta có:a3-a=a(a2-1)=a(a-1)(a+1) chia hết cho 6
tương tự :b3-b chia hết cho 6 và c3-c chia hết cho 6
\(\Rightarrow\)A chia hết cho 6
=> a3+b3+c3 -a-b-c chia hết cho 6
mà a3+b3+c3chia hết cho 6 nên a+b+c chia hết cho 6
k cho tớ xog tớ giải hai câu còn lại cho nha
a/ n3 - n = n(n+1)(n-1) đây là ba số nguyên liên tiếp nên chia hết cho 6
Bài chỉ chứng minh vế phải chia hết vế trái chứ k tìm n hay a nhé bạn
Nguyễn Ngọc Phương: Mình đâu có tìm $n,a$ đâu hả bạn? Mình đang chỉ ra TH sai mà???
Chả hạn, chứng minh $n(n+1)(n^2+1)\vdots 5$ thì có nghĩa mọi số tự nhiên/ nguyên $n$ đều phải thỏa mãn. Nhưng chỉ cần có 1 TH $n$ thay vào không đúng nghĩa là đề không đúng rồi.
dễ ẹc!!!!!!!!
bik làm r, mờ hk bik xóa sao th