Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2: Ta có 2 đẳng thức ngược chiều: \(\frac{8\left(a^2+b^2+c^2\right)}{ab+bc+ca}\ge8;\frac{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+c\right)^3}\le8\)
Áp dụng BĐT AM-GM ta có:
\(\frac{8\left(a^2+b^2+c^2\right)}{ab+bc+ca}+\frac{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+c\right)^3}\)\(\ge2\sqrt{\frac{8\left(a^2+b^2+c^2\right)}{ab+bc+ca}.\frac{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+c\right)^3}}\)
Suy ra BĐT đã cho là đúng nếu ta chứng minh được
\(27\left(a^2+b^2+c^2\right)\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(ab+bc+ca\right)\left(a+b+c\right)^3\left(1\right)\)
Sử dụng đẳng thức \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)và theo AM-GM: \(abc\le\frac{1}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)ta được \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\left(2\right)\)
Từ (1)và(2) suy ra ta chỉ cần chứng minh \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)đúng=> đpcm
Đẳng thức xảy ra khi và chỉ khi a=b=c
Bài 3:
Ta có 2 BĐT ngược chiều: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2};\sqrt[3]{\frac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\le\sqrt[3]{\frac{1}{8}}=\frac{1}{2}\)
Bổ đề: \(x^3+y^3+z^3+3xyz\ge xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)\left(1\right)\forall x,y,z\ge0\)
Chứng minh: Không mất tính tổng quát, giả sử \(x\ge y\ge z\). Khi đó:
\(VT\left(1\right)-VP\left(1\right)=x\left(x-y\right)^2+z\left(y-z\right)^2+\left(x-y+z\right)\left(x-y\right)\left(y-z\right)\ge0\)
Áp dụng BĐT AM-GM ta có:
\(\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\ge64\left(abc\right)^2\)\(\Leftrightarrow\frac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\left[\frac{4abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right]^3\)
Suy ra ta chỉ cần chứng minh \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{4abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge2\)
\(\Leftrightarrow a\left(a+b\right)\left(a+c\right)+b\left(b+c\right)\left(b+a\right)+c\left(c+a\right)\left(c+b\right)+4abc\)\(\ge2\left(a+b\right)\left(b+c\right)\left(c+a\right)\)\(\Leftrightarrow a^3+b^3+c^3+3abc\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)đúng theo bổ đề
Đẳng thức xảy ra khi và chỉ khi a=b=c hoặc a=b,c=0 và các hoán vị
Nguyễn Xuân Đình Lực:
mình ghi rõ trên rùi, sắp xếp theo thứ tự luôn cho dễ nhìn kìa bạn:
Cặp 1: $a^3b$ và $abc^2$ tạo ra $a^2bc$
Cặp 2: $b^3c$ và $bca^2$ tạo ra $b^2ca$
Cặp 3: $c^3a$ và $cab^2$ tạo ra $c^2ab$
Lời giải:
Ba số thực $a,b,c$ cần có thêm điều kiện không âm mới đúng.
BĐT cần chứng minh tương đương với:
$ab^3+bc^3+ca^3+2abc(a+b+c)\leq a^3b+b^3c+c^3a+ab^3+bc^3+ca^3+abc(a+b+c)$
$\Leftrightarrow abc(a+b+c)\leq a^3b+b^3c+c^3a(*)$
Áp dụng BĐT Bunhiacopxky:
$(a^3b+b^3c+c^3a)(abc^2+bca^2+cab^2)\geq (a^2bc+b^2ca+c^2ab)^2$
$\Rightarrow a^3b+b^3c+c^3a\geq abc(a+b+c)$
BĐT $(*)$ đúng nên ta có đpcm.
Dấu "=" xảy ra khi $a=b=c$
a,b,c>0
\(VP-VT=a^3b+b^3c+c^3a-abc\left(a+b+c\right)=abc\Sigma\frac{\left(a-b\right)^2}{a}\ge0\)
Bài 1 :
Ta có : \(ab+bc+ac=abc+a+b+c\)
\(\Leftrightarrow ab-abc+bc-b+ac-a-c=0\)
\(\Leftrightarrow ab-abc+bc-b+ac-a+1-c=1\)
\(\Leftrightarrow ab\left(1-c\right)+b\left(c-1\right)+a\left(c-1\right)+\left(1-c\right)=1\)
\(\Leftrightarrow ab\left(1-c\right)-b\left(1-c\right)-a\left(1-c\right)+\left(1-c\right)=1\)
\(\Leftrightarrow\left(1-c\right)\left(ab-a-b+1\right)=1\)
\(\Leftrightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)=1\)
Ta có thế đặt \(x=1-a;y=1-b;z=1-c\Rightarrow xyz=1\)
Nhưng trong đẳng thức cần chứng minh theo \(x;y;z\)
\(\Rightarrow\) Thế \(a=1-x;b=1-y;c=1-z\) vào được :
\(\frac{1}{3+ab-\left(2a+b\right)}=\frac{1}{3+\left(1-x\right)\left(1-y\right)-2\left(1-x\right)-\left(1-y\right)}=\frac{1}{1+x+xy}\)
Tương tự :
\(\frac{1}{3+ab-\left(2b+c\right)}=\frac{1}{3+\left(1-y\right)\left(1-z\right)-2\left(1-y\right)-\left(1-z\right)}=\frac{1}{1+y+yz}\)
\(\frac{1}{3+ac-\left(2c+a\right)}=\frac{1}{3+\left(1-x\right)\left(1-z\right)-2\left(1-z\right)-\left(1-x\right)}=\frac{1}{1+z+zx}\)
Theo gt ta có xyz =1
\(\Rightarrow VT=\frac{1}{1+x+xy}+\frac{1}{1+y+yz}+\frac{1}{1+z+zx}\)
\(=\frac{1}{1+x+xy}+\frac{x}{x+xy+xyz}+\frac{xy}{xy+xyz+x^2yz}\)
\(=\frac{1}{1+x+xy}+\frac{x}{x+xy+1}+\frac{xy}{xy+1+x}\)
\(=\frac{1+x+xy}{1+x+xy}=1=VP\)
Bài 2 :
Áp dụng BĐT AM - GM
Ta có : \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{3}{\sqrt[3]{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\)
\(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\ge\frac{3\sqrt[3]{abc}}{\sqrt[3]{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\)
Cộng theo vế ta được :
\(\frac{1}{a+1}+\frac{a}{a+1}+\frac{1}{b+1}+\frac{b}{b+1}+\frac{1}{c+1}+\frac{c}{c+1}\ge\frac{3+3\sqrt[3]{abc}}{\sqrt[3]{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\)
\(\Leftrightarrow1+1+1\ge\frac{3\left(\sqrt[3]{abc}+1\right)}{\sqrt[3]{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\)
\(\Leftrightarrow3\ge\frac{3\left(\sqrt[3]{abc}+1\right)}{\sqrt[3]{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\)
\(\Leftrightarrow3\sqrt[3]{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge3\left(\sqrt[3]{abc}+1\right)\)
\(\Leftrightarrow\sqrt[3]{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\sqrt[3]{abc}+1\)
\(\Leftrightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge\left(\sqrt[3]{abc}+1\right)^3\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c\)
Chúc bạn học tốt !!
ez mà :)))
bạn ơi, hình như bạn nhớ nhầm rồi đấy, ko có HĐT đó đâu, mà có HĐT thức ấy nhưng a+b+c = 0 nữa cơ