Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\sqrt{\frac{a}{b+c}}=\sqrt{\frac{a^2}{a\left(b+c\right)}}\ge\frac{2a}{a+b+c}\)(1)
Tương tự: \(\sqrt{\frac{b}{a+c}}\ge\frac{2b}{a+b+c}\)(2)
\(\sqrt{\frac{c}{b+a}}\ge\frac{2c}{a+b+c}\)(3)
Cộng (1),(2),(3) vế theo vế => \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\ge2\)
Áp dụng BĐT Cô-si cho 3 số dương, ta có :
\(\frac{1}{a\left(a+b\right)}+\frac{1}{b\left(b+c\right)}+\frac{1}{c\left(a+c\right)}\ge3\sqrt[3]{\frac{1}{abc\left(a+b\right)\left(b+c\right)\left(a+c\right)}}\)
Cần chứng minh : \(\sqrt[3]{\frac{1}{abc\left(a+b\right)\left(b+c\right)\left(a+c\right)}}\ge\frac{9}{2\left(a+b+c\right)^2}\)
hay \(8\left(a+b+c\right)^6\ge729abc\left(a+b\right)\left(b+c\right)\left(a+c\right)\)
Thật vậy, ta có : \(\left(a+b+c\right)^3\ge\left(3\sqrt[3]{abc}\right)^3=27abc\)
\(8\left(a+b+c\right)^3=\left(2\left(a+b+c\right)\right)^3=\left(a+b+b+c+a+c\right)^3\)
\(\ge\left(3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\right)^3=27\left(a+b\right)\left(b+c\right)\left(a+c\right)\)
Nhân từng vế 2 bất đẳng thức trên, ta được đpcm
Dấu "=" xảy ra khi a = b = c
Vậy ...
2. Áp dụng BĐT Cô-si cho 3 số không âm, ta có :
\(B\ge3\sqrt[3]{\sqrt{\left(a^3+b^3+1\right)\left(b^3+c^3+1\right)\left(a^3+c^3+1\right)}}\)
Ta có : \(a^3+b^3+1\ge3\sqrt[3]{a^3b^3}=3ab\Rightarrow\sqrt{a^3+b^3+1}\ge\sqrt{3ab}\)
Tương tự : ....
\(\Rightarrow\sqrt{\left(a^3+b^3+1\right)\left(b^3+c^3+1\right)\left(c^3+a^3+1\right)}\ge\sqrt{27a^2b^2c^2}=\sqrt{27}\)
\(\Rightarrow B\ge3\sqrt[3]{\sqrt{27}}=3\sqrt{3}\)
Vậy GTNN của B là \(3\sqrt{3}\)khi a = b = c = 1
Ta có:\(a+\left(b+c\right)\ge2\sqrt{a\left(b+c\right)}\Rightarrow\frac{a+b+c}{2}\ge\sqrt{a\left(b+c\right)}\)
\(\Rightarrow\sqrt{\frac{a}{b+c}}=\frac{a}{\sqrt{a\left(b+c\right)}}\ge\frac{a}{\frac{a+b+c}{2}}=\frac{2a}{a+b+c}\)
Chứng minh tương tự rồi cộng vế với vế ta được:
\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\ge\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}a=b+c\\b=c+a\\c=a+b\end{cases}}\)-> hệ vô nghiệm
\(\)\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}>2\)
Ta có đpcm
Đặt \(\left(\frac{a}{b};\sqrt{\frac{b}{c}};\sqrt[3]{\frac{c}{a}}\right)=\left(x;y;z\right)\Rightarrow xy^2z^3=1\)
\(P=x+y+z=x+\frac{y}{2}+\frac{y}{2}+\frac{z}{3}+\frac{z}{3}+\frac{z}{3}\)
\(P\ge6\sqrt[6]{\frac{xy^2z^3}{108}}=\frac{6}{\sqrt[6]{108}}=\sqrt[6]{432}>\frac{5}{2}\)