\(\frac{2}{3.5}\)+\(\frac{2}{5.7}\)+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2018

= 2 . ( \(\frac{1}{3}\)-  \(\frac{1}{5}\)+  \(\frac{1}{5}\)-  \(\frac{1}{7}\)+  ..... +  \(\frac{1}{97}\)-   \(\frac{1}{99}\)

= 2 . (  \(\frac{1}{3}\)-  \(\frac{1}{99}\)

= 2 . \(\frac{2}{3}\)

\(\frac{4}{3}\)

32% = \(\frac{32}{100}\)=  \(\frac{8}{25}\)

\(\frac{4}{3}\)>   \(\frac{8}{25}\)=>  \(\frac{2}{3.5}\)+   \(\frac{2}{5.7}\)+   \(\frac{2}{7.9}\)+ ..... + \(\frac{2}{97.99}\)>  32%

6 tháng 5 2018

\(A=\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\)

\(A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)

\(A=\frac{1}{3}-\frac{1}{99}=\frac{33}{99}-\frac{1}{99}=\frac{32}{99}=\frac{800}{2475}\)

\(32\%=\frac{8}{25}=\frac{792}{2475}\)

\(\frac{800}{2475}>\frac{792}{2475}\Rightarrow\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}>32\%\)

6 tháng 5 2018

Đặt : \(A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)

\(=\frac{1}{3}-\frac{1}{99}=\frac{33}{99}-\frac{1}{99}=\frac{32}{99}\)

Do \(\frac{32}{99}>32\%\)nên \(A>32\%\left(đpcm\right)\)

6 tháng 5 2018

7/15=1/5+4/15

Gọi 2/3.5 +2/5.7 +2/7.9 +...+2/97.99 là A

A=2/3.5 +2/5.7 +2/7.9+...+ 2/97.99

A= 1.(1/3-1/5+1/5-1/7+1/7-1/9+...+1/97-1/99)

A=1.(1/3-1/99)

A=1.32/99

A=32/99

Ta có: A>8/25

=>32/99>8.25

Vậy 2/3.5+2/5.7+2/7.9+...+2/97.99>8/25

k cho mk nha!!!

22 tháng 2 2020

\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)

\(=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}>\frac{32}{100}=\frac{8}{25}\)

25 tháng 4 2017

ta co : 65%=0,65

goi A= 4.(1/3.5+1/5.7+1/7.9+............+1/97.99)

2A=4.( 2/3.5+2/5.7+2/7.9+...............+2/97.99)

2A=4.(1/3-1/5+1/5-1/7+1/7-1/9+...+1/97-1/99)

2A=4.(1/3-1/99)

2A=4.(33/=99+1/99)

2A=4.34/99

2A=136/99

A=136/99:2

A=68/99=0,69=0,68

Vi A=0,68 > 0,65

=> A > 65%

2 tháng 5 2018

\(A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}+\frac{2}{99.101}\)

\(A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}+\frac{1}{99}-\frac{1}{101}\)

\(A=1-\frac{1}{101}\)

\(A=\frac{101}{101}-\frac{1}{101}\)

\(A=\frac{100}{101}\)

Chúc bạn học tốt !!! 

2 tháng 5 2018

A = 1/1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + ... + 1/99 - 1/101 

A = 1/1 - 1/101 

A = 101/101 - 1/101 

A = 100/101 

2 tháng 4 2015

1/3 - 1/99 = 33/99 - 1/99 = 32/99

2 tháng 4 2015

\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)

\(=\frac{1}{3}-\frac{1}{99}=\frac{33}{99}-\frac{1}{99}=\frac{32}{99}\)

18 tháng 6 2018

Giải:

Biến đổi vế trái BĐT:

\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}\)

\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{97}-\dfrac{1}{99}\)

\(=\dfrac{1}{3}-\dfrac{1}{99}\)

\(=\dfrac{32}{99}\)

\(\dfrac{32}{99}>\dfrac{32}{100}\)

\(\Leftrightarrow\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}>\dfrac{32}{100}\)

\(\Leftrightarrow\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}>32\%\)

Vậy ...

18 tháng 6 2018

Thanks

10 tháng 5 2018

A =(1/2 +1)×(1/3 +1)×(1/4 +1)×....×(1/99 +1)

=3/2x4/3x...............x100/99

=2-1/99

=197/99

10 tháng 5 2018

A= \(\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot.....\cdot\frac{100}{99}\)

A=\(\frac{\left(3\cdot4\cdot5\cdot....\cdot99\right)\cdot100}{2\cdot\left(3\cdot4\cdot5\cdot...\cdot99\right)}\)

A=\(\frac{100}{2}=50\)

\(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{97\cdot99}\)

\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)

=> \(\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)>\(\frac{32}{100}\)=32%

7 tháng 4 2018

Câu 1 : 

Ta có : 

\(A=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}\)

\(A=\frac{4-1}{4}+\frac{9-1}{9}+\frac{16-1}{16}+...+\frac{10000-1}{10000}\)

\(A=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+...+\frac{100^2-1}{100^2}\)

\(A=\frac{2^2}{2^2}-\frac{1}{2^2}+\frac{3^2}{3^2}-\frac{1}{3^2}+\frac{4^2}{4^2}-\frac{1}{4^2}+...+\frac{100^2}{100^2}-\frac{1}{100^2}\)

\(A=1-\frac{1}{2^2}+1-\frac{1}{3^2}+1-\frac{1}{4^2}+...+1-\frac{1}{100^2}\)

\(A=\left(1+1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)\)

Do từ \(2\) đến \(100\) có \(100-2+1=99\) số \(1\) nên : 

\(A=99-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)< 99\) \(\left(1\right)\)

Đặt \(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\) lại có : 

\(B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(B< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(B< 1-\frac{1}{100}< 1\)

\(\Rightarrow\)\(A=99-B>99-1=98\)

\(\Rightarrow\)\(A>98\) \(\left(2\right)\)

Từ (1) và (2) suy ra : 

\(98< A< 99\)

Vậy A không phải là số nguyên 

Chúc bạn học tốt ~ 

7 tháng 4 2018

Bài 2 a) \(\Rightarrow M=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}=\frac{1}{3}-\frac{1}{99}\)

\(=\frac{31}{99}\)