K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2015

GOI UCLN(21N+5;14N+3)LA D

{21N+5 CHIA HẾT CHO D

{14N+3 CHIA HET CHO D

BCNN(21;14)=7.3.2=42

{3.(21N+5)CHIA HẾT CHO D

{2.(14N+3) CHIA HẾT CHO D

{42.N+21 CHIA HẾT CHO D

{42N+22CHIA HET CHO D

=42N+21-42N+22 CHIA HET CHO D

=1CHIA HET CHO D

=D=1

21 tháng 6 2020

Gọi d là ƯC(14n + 3 ; 21n + 5)

\(\Rightarrow\hept{\begin{cases}14n+3⋮d\\21n+5⋮d\end{cases}\Rightarrow}\hept{\begin{cases}3\left(14n+3\right)⋮d\\2\left(21n+5\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}42n+9⋮d\\42n+10⋮d\end{cases}}\)

=> ( 42n + 10 ) - ( 42n + 9 ) chia hết cho d

=> 42n + 10 - 42n - 9 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> ƯCLN(14n + 3 ; 21n + 5) = 1

=> \(\frac{14n+3}{21n+5}\)tối giản ( đpcm )

31 tháng 7 2016

gọi UCLN( 14n +3 , 21n +4 ) =d  (1)

=> 21n+4  và 14n+3 chia hết cho d => 21n+4 - 14n-3  chia hết cho d 

=> 7n+1 chia hết cho d =>( 7n+1 ). 2 chia hết cho d => 14n +2 chia hết cho d 

=> 14n+ 3 - 14n - 2 chia hết cho d =>1 chia hết cho d => d thuộc ước của 1 (2) 

từ (1) ,(2) => dpcm

9 tháng 4 2017

Gọi UCLN(14n+3,21n+4) =a

ta có :14n+3 chia hết cho a ; 21n+4 chia hết cho a

suy ra (21n+4) : 3 .2 chia hết cho a và 14n+3 chia hết cho a

suy ra 14n+2 chia hết cho a và 14n+3 chia hết cho a

suy ra (14n+3) - (14n+2) chia hết cho a

suy ra 14n+3 - 14n-2 chia hết cho a

 suy ra 1 chia hết cho a

và a thuộc U(1) = 1

Vậy 14n+3/14n+4 là phân số tối giản

chúc bạn học tốt

11 tháng 3 2024

rrxdưAsse ddgjug fcrddf3ưeesfffdd

22 tháng 3 2016

gọi d là UCLN(14n+3;21n+4)

ta có:

3(14n+3)-2(21n+4) chia hết cho d

=>(42n+9)-(42n+8) chia hết cho d

=>1 chia hết cho d

=>d=1

=> ps \(\frac{14n+3}{21n+4}\) tối giản

22 tháng 3 2016

mk chỉ giải tắt thôi nha

gọi ƯCLN ( của tử và mẫu p/s )là d (d thuộc N sao)

=>tử chia hết cho d

mẫu cũng chia hết cho d

=> 3* tử -2*mẫu = 1 chia hết cho d( do tử và mẫu chia hết cho d)

nên d=1(do d thuộc N sao)

Do đó phân số trên tối giản

mình là người đầu tiên k mình nha

24 tháng 3 2016

gọi d là UCLN(14n+3;21n+4)

ta có:

3(14n+3)-2(21n+4) chia hết cho d

=>(42n+9)-(42n+8) chia hết cho d

=>1 chia hết cho d

=>d=1

=>ps trên tối giản

25 tháng 3 2016

goỊ Đ LÀ ƯC(21N+4/14N+3

=>14N+3 CHIA HẾT CHO Đ=>3(14N+12)CHIA HẾT CHO Đ

=>21N+4 CHIA HẾT CHO Đ=>2(21+8) CHI HẾT CHO Đ

=>42N+12 -42N+8 CHIA HẾT CHO Đ

=>1 CHIA HẾT CHO Đ =>Đ=1

VÌ 12N+4/14N+3 CÓ ƯC =1

=>21N+4/14N+3 LÀ PHÂN SỐ TỐI GIẢN

28 tháng 2 2016

Gọi ƯCLN (14n + 3 ; 21n + 5) = d

=> 14n + 3 chia hết cho d => 3(14n + 3) chia hết cho d

     21n + 5 chia hết cho d => 2(21n + 5) chia hết cho d

=>2(21n + 5) - 3(14n + 3) chia hết cho d

=> (42n + 10) - (42n + 9) chia hết cho d

=> d = ±1

=> \(\frac{14n+3}{21n+5}\) là phân số tối giản

28 tháng 2 2016

Các bạn xem mình làm có đúng không ??

Đặt d = ƯCLN ( 14n + 3,21n + 5 ) ( d ∈ ℕ* )

Ta có : 14 n + 3 ⋮ d và 21n + 5 ⋮ d

⇒ 3( 14n + 3 ) ⋮ và 2( 21n + 5 ) ⋮ d ⇒ 42n + 9 ⋮ d và 42n + 10 ⋮ d

⇒ (42n + 10) - (42n + 9) ⋮ d ⇒ 1 ⋮ d . Do đó : d = 1

Vậy phân số trên là phân số tối giản

17 tháng 2 2018

a, Bạn tham khảo tại đây nhé : https://olm.vn/hoi-dap/question/62013.html

b, Gọi d là ƯCLN(tử;mẫu)

=> \(\hept{\begin{cases}14n+17⋮d\\21n+25⋮d\end{cases}}\)=> \(\hept{\begin{cases}3\left(14n+17\right)⋮d\\2\left(21n+25\right)⋮d\end{cases}}\)=> \(\hept{\begin{cases}42n+51⋮d\\42n+50⋮d\end{cases}}\)

Hay \(4n+51-42n-50⋮d\)

=> \(1⋮d\)

Hay ƯCLN(tử;mẫu)=1 Vậy phân số trên là p/s tối giản.

14 tháng 7 2018

a,

Gọi ƯCLN (12n+1,30n+2) là d

⇒(12n+1)⋮d

(30n+2)⋮d

⇒5(12n+1)−2(30n+2)⋮d

⇒60n+5−60n−4⋮d

⇒1⋮dd=1

Vậy ƯCLN (12n+1,30n+2)=1⇔12n+1/30n+2 là p/s tối giản