K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2018

a) Ta có \(A=a^3-6a^2-7a+12=\left(a-1\right)\left(a^2-5a+12\right)=\left(a-1\right)\left(a^2-5a+6\right)+6\left(a-1\right)\)

=\(\left(a-1\right)\left(a-2\right)\left(a-3\right)+6\left(a-1\right)\)

Mà (a-1)(a-2)(a-3) là tích 3 số nguyên liên tiếp => cúng chia hết cho 6 => ... chia hết cho 6(ĐPCM)

^_^

30 tháng 1 2018

Có ai kg giúp mình bài này với

a: \(x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

b: \(x-2\cdot\sqrt{x}\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

c: \(=x^2-2\cdot x\cdot\dfrac{1}{2}y+\dfrac{1}{4}y^2+\dfrac{3}{4}y^2=\left(x-\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2>0\forall x,y\ne0\)

7 tháng 10 2018

      \(2x^2+y^2+10x-4y\ge2xy-13\) (1)

\(\Leftrightarrow2x^2+y^2+10x-4y-2xy+13\ge0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+4\left(x-y\right)+4+x^2+6x+9\ge0\)

\(\Rightarrow\left(x-y\right)^2+2.\left(x-y\right).2+2^2+x^2+2.x.3+3^2\ge0\)

\(\Rightarrow\left(x-y+2\right)^2+\left(x+3\right)^2\ge0\)(2)

Ta thấy (2) luôn đúng mà \(\left(2\right)\Leftrightarrow\left(1\right)\)nên (1) luôn đúng

Dấu "=" xảy ra khi:

\(\hept{\begin{cases}x-y+2=0\\x+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=-3\\y=-1\end{cases}}}\)

16 tháng 9 2017

@alibaba nguyễn : Giúp với ông ei :) Chắc ông cũng học đến cái này r :))

24 tháng 7 2017

Sửa đề

\(P=9x^2y^2+y^2-6xy-2y+2\)

\(=\left(9x^2y^2-6xy+1\right)+\left(y^2-2y+1\right)\)

\(=\left(3xy-1\right)^2+\left(y-1\right)^2\ge0\)

24 tháng 7 2017

haizzz,em đã nghĩ sai đề từ khi mới làm ( hèn chi làm hoài ko ra )

AH
Akai Haruma
Giáo viên
8 tháng 9 2017

Lời giải:

Đặt \((x+y+z,xy+yz+xz)=(a,b)\). Bài toán trở thành:

Cho \(a,b\in\mathbb{R}|a+b=5\).CMR: \(a^2-2b\geq 3\)

----------------------------------------------------------------

Với mọi \(x,y,z\in\mathbb{R}\Rightarrow x^2+y^2+z^2\geq xy+yz+xz\)

BĐT đúng vì tương đương với \((x-y)^2+(y-z)^2+(z-x)^2\geq 0\)

Suy ra \((x+y+z)^2\geq 3(xy+yz+xz)\Leftrightarrow a^2\geq 3b\)

Bây giờ, thử \(a^2-2b=3\)

Giải HPT \(\left\{\begin{matrix} a+b=5\\ a^2-2b=3\end{matrix}\right.\Rightarrow \) \(\left\{\begin{matrix} a=-1-\sqrt{14}\\ b=6+\sqrt{14}\end{matrix}\right.\Rightarrow a^2<3b\) (vô lý)

Thử \(a^2-2b=4\)

Giải HPT suy ra \(\left\{\begin{matrix} a=-1-\sqrt{15}\\ b=6+\sqrt{15}\end{matrix}\right.\Rightarrow a^2<3b\) (vô lý)

Vậy kết luận là đề bài sai.

AH
Akai Haruma
Giáo viên
21 tháng 2 2020

Lời giải:

Nếu $y=0$ thì $x=0$. Khi đó $1-xy=1$ là bình phương của một số hữu tỉ.

Nếu $y\neq 0$. Ta có:

\(\frac{x^5+y^5}{y^4}=\frac{2x^2y^2}{y^4}\)

\(\Leftrightarrow \frac{x^5}{y^4}+y=\frac{2x^2}{y^2}\) \(\Rightarrow \frac{x^6}{y^4}+xy=\frac{2x^3}{y^2}\)

\(\Rightarrow 1-xy=\frac{x^6}{y^4}+1-\frac{2x^3}{y^2}=\left(\frac{x^3}{y^2}-1\right)^2\)

Với $x,y\in\mathbb{Q}$ thì $\frac{x^3}{y^2}-1\in\mathbb{Q}$ nên $1-xy$ là bình phương một số hữu tỉ (đpcm)

Vậy......

10 tháng 11 2019

Giải xàm tí ạ!\(VT-VP=\frac{1}{2}\left[\left(x^2-3x+1\right)^2+\left(y^2-3y+1\right)^2+\left(x-y\right)^2\left(5-x-y\right)\left(x+y-1\right)\right]\ge0\)

=> qed

12 tháng 11 2019

??? KHang ơi! Sai rồi ? Tại sao VT - Vp = 1/2. Dòng thứ 2 ???