Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) \(\cot ^2a+1=\left(\frac{\cos a}{\sin a}\right)^2+1=\frac{\cos ^2a+\sin ^2a}{\sin ^2a}=\frac{1}{\sin ^2a}\)
b)
\(\tan ^2a+1=\left(\frac{\sin a}{\cos a}\right)^2+1=\frac{\sin ^2a+\cos ^2a}{\cos ^2a}=\frac{1}{\cos ^2a}\)
c) Đề bài sai.
\(\sin ^4a+\cos ^2a=\sin ^2a.\sin ^2a+\cos ^2a\)
\(=\sin ^2a(1-\cos ^2a)+\cos ^2a\)
\(\sin ^2a+\cos ^2a-\sin ^2a\cos ^2a=1-\sin ^2a\cos ^2a\)
d)
\(\frac{1-4\sin ^2a\cos ^2a}{(\sin a+\cos a)^2}=\frac{1-(2\sin a\cos a)^2}{\sin ^2a+2\sin a\cos a+\cos ^2a}=\frac{(1-2\sin a\cos a)(1+2\sin a\cos a)}{1+2\sin a\cos a}\)
\(=1-2\sin a\cos a\)
e) ĐK tồn tại tan là $\cos x\neq 0$
Vì \(\tan a=\frac{\sin a}{\cos a}\Rightarrow \sin a=\tan a\cos a\)
Ta có:
\(\frac{2\sin a\cos a-1}{\cos ^2a-\sin ^2a}=\frac{1-2\sin a\cos a}{\sin ^2a-\cos ^2a}=\frac{\cos ^2a+\sin ^2a-2\sin a\cos a}{(\sin a-\cos a)(\sin a+\cos a)}\)
\(=\frac{(\sin a-\cos a)^2}{(\sin a-\cos a)(\sin a+\cos a)}=\frac{\sin a-\cos a}{\sin a+\cos a}\)
\(=\frac{\tan a\cos a-\cos a}{\tan a\cos a+\cos a}=\frac{\cos a(\tan a-1)}{\cos a(\tan a+1)}\)\(=\frac{\tan a-1}{\tan a+1}\) (đpcm)
B A C a
Xét ΔBAC vuông tại B có a = ^A ta có :
a) \(\frac{\sin\alpha}{\cos\alpha}=\frac{\sin A}{\cos A}=\frac{\frac{BC}{AB}}{\frac{AB}{AC}}=\frac{BC}{AB}\cdot\frac{AC}{AB}=\frac{BC}{AB}=\tan A=\tan\alpha\left(đpcm\right)\)
b) \(\frac{\cos\alpha}{\sin\alpha}=\frac{\cos A}{\sin A}=\frac{\frac{AB}{AC}}{\frac{BC}{AC}}=\frac{AB}{AC}\cdot\frac{AC}{BC}=\frac{AB}{BC}=\cot A=\cot\alpha\left(đpcm\right)\)
c) \(\tan\alpha\cdot\cot\alpha=\tan A\cdot\cot A=\frac{BC}{AB}\cdot\frac{AB}{BC}=1\left(đpcm\right)\)
d) \(\sin^2\alpha+\cos^2\alpha=\sin^2A+\cos^2A=\frac{BC^2}{AC^2}+\frac{AB^2}{AC^2}=\frac{AB^2+BC^2}{AC^2}=1\left(đpcm\right)\)
e) \(\frac{1}{\cos^2\alpha}=\frac{1}{\cos^2A}=\frac{1}{\frac{AB^2}{AC^2}}=\frac{AC^2}{AB^2};1+\tan^2\alpha=1+\tan^2A=1+\frac{BC^2}{AB^2}=\frac{AB^2+BC^2}{AB^2}=\frac{AC^2}{AB^2}\)
\(\Rightarrow1+\tan^2\alpha=\frac{1}{\cos^2\alpha}\left(đpcm\right)\)
f) \(\frac{1}{\sin^2\alpha}=\frac{1}{\sin^2A}=\frac{1}{\frac{BC^2}{AC^2}}=\frac{AC^2}{BC^2};1+\cot^2\alpha=1+\cot^2A=1+\frac{AB^2}{BC^2}=\frac{BC^2+AB^2}{BC^2}=\frac{AC^2}{BC^2}\)
\(\Rightarrow1+\cot^2\alpha=\frac{1}{\sin^2\alpha}\left(đpcm\right)\)
a: \(\sin^2a+\cos^2a=1\)
\(\Leftrightarrow\cos^2a=1-\sin^2a=\left(1-\sin a\right)\left(1+\sin a\right)\)
hay \(\dfrac{\cos a}{1-\sin a}=\dfrac{1+\sin a}{\cos a}\)
b: \(VT=\dfrac{\left(\sin a+\cos a+\sin a-\cos a\right)\left(\sin a+\cos a-\sin a+\cos a\right)}{\sin a\cdot\cos a}\)
\(=\dfrac{2\cdot\cos a\cdot2\sin a}{\sin a\cdot\cos a}=4\)
a: \(M=\dfrac{1}{tana+cota}=1:\left(\dfrac{sina}{cosa}+\dfrac{cosa}{sina}\right)\)
\(=1:\dfrac{sin^2a+cos^2a}{cosa\cdot sina}=cosa\cdot sina=\dfrac{2\sqrt{2}}{9}\)
b: \(A=\left(sin^2a+cos^2a\right)^3-3\cdot sin^2a\cdot cos^2a+3\cdot sin^2a\cdot cos^2a\)
=1