K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
8 tháng 7 2017

Lời giải:

Ta có:

\(\frac{a}{a+bc}=\frac{a}{a(a+b+c)+bc}=\frac{a}{(a+b)(a+c)}\)

Thực hiện tương tự với các phân thức còn lại thu được:

\(\text{VT}=\frac{a(b+c)+b(a+c)+c(a+b)}{(a+b)(b+c)(c+a)}=\frac{2(ab+bc+ac)}{(a+b)(b+c)(c+a)}\) \((1)\)

Ta để ý bổ đề sau:

\((a+b)(b+c)(c+a)\geq \frac{8}{9}(a+b+c)(ab+bc+ac)\)

Chứng minh:

\(\prod(a+b)=(a+b+c)(ab+bc+ac)-abc\geq (a+b+c)(ab+bc+ac)-\frac{(a+b+c)(ab+bc+ac)}{9}=\text{VP}\)

Áp dụng vào bài toán:

\((a+b)(b+c)(c+a)\geq \frac{8}{9}(ab+bc+ac)\) \((2)\)

Từ \((1),(2)\Rightarrow \text{VT}\leq \frac{9}{4}\) (đpcm)

Dấu bằng xảy ra khi \(a=b=c=\frac{1}{3}\)

10 tháng 10 2017

Áp dụng BĐT AM-GM và Cauchy-Schwarz ta có:

\(VT=\dfrac{a^2}{a+abc}+\dfrac{b^2}{b+abc}+\dfrac{c^2}{c+abc}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+3abc}\)

\(\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+\dfrac{\left(a+b+c\right)\left(ab+bc+ca\right)}{3}}=\dfrac{3\left(a+b+c\right)}{3+ab+bc+ca}\)

Tức cần chứng minh \(\dfrac{3\left(a+b+c\right)}{3+ab+bc+ca}\ge1\)

\(\Leftrightarrow3\left(a+b+c\right)\ge3+ab+bc+ca\)

\(\Leftrightarrow9\left(a+b+c\right)^2\left(a^2+b^2+c^2\right)\ge\left(3\left(a^2+b^2+c^2\right)+ab+bc+ca\right)^2\)

Đặt \(a^2+b^2+c^2=k\left(ab+bc+ca\right)\left(k\ge1\right)\) và ta cần cm:

\(9(k+2)k\geq(3k+1)^2\)\(\Leftrightarrow12k-1\ge9\) *đúng với \(k\ge 1\) :|*

11 tháng 10 2017

Vốn dĩ đề sai nên mới không ai giải đó bác

29 tháng 11 2017

a) ta có

\(3\left(a+b+c\right)=\left(a^2+b^2+c^2\right)\left(a+b+c\right)\)

\(=a^3+b^3+c^3+a^2b+ab^2+b^2c+bc^2+a^2c+ac^2\)

\(=\left(a^3+ab^2\right)+\left(b^3+bc^2\right)+\left(c^3+ca^2\right)+a^2b+b^2c+c^2a\)

Áp dụng BĐT Cauchy ta có

\(a^3+ab^2\ge2a^2b\) ; \(b^3+bc^2\ge2b^2c\) ; \(c^3+ca^2\ge2c^2a\)

\(\left(a^3+ab^2\right)+\left(b^3+bc^2\right)+\left(c^3+ca^2\right)+a^2b+b^2c+c^2a\ge3\left(a^2b+b^2c+c^2a\right)\)\(\Rightarrow3\left(a+b+c\right)\ge3\left(a^2b+b^2c+c^2a\right)\)

\(\Rightarrow a+b+c\ge a^2b+b^2c+c^2a\) (1)

Áp dụng BĐT C.B.S ta có

\(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)=9\)

\(\Rightarrow a+b+c\le3\) (2)

từ (1) và (2) ta được đpcm

29 tháng 11 2017

b) Áp dụng BĐT Cauchy ta có :

\(ab\le\dfrac{a^2+b^2}{2}=\dfrac{3-c^2}{2}\) tương tự

\(bc\le\dfrac{3-a^2}{2}\) ; \(ac\le\dfrac{3-b^2}{2}\)

BĐT cần chứng minh trở thành :

\(\dfrac{3-a^2}{2\left(3+a^2\right)}+\dfrac{3-b^2}{2\left(3+b^2\right)}+\dfrac{3-c^2}{2\left(3+c^2\right)}\le\dfrac{3}{4}\)

Ta chứng minh BĐT phụ sau

\(\dfrac{3-c^2}{2\left(3+c^2\right)}\le\dfrac{c^2}{4}\)\(\Leftrightarrow12-4c^2\le2c^2\left(3+c^2\right)\Leftrightarrow c^4+5c^2+6\ge0\)

\(\Leftrightarrow\left(c^2+2\right)\left(c^2+3\right)\ge0\) (luôn đúng)

tương tự : \(\dfrac{3-a^2}{2\left(3+c^2\right)}\le\dfrac{a^2}{4}\) ; \(\dfrac{3-b^2}{2\left(3+b^2\right)}\le\dfrac{b^2}{4}\)

Cộng Ba vế BĐT trên lại ta có:

\(\dfrac{3-a^2}{2\left(3+a^2\right)}+\dfrac{3-b^2}{2\left(3+b^2\right)}+\dfrac{3-c^2}{2\left(3+c^2\right)}\le\dfrac{a^2+b^2+c^2}{4}=\dfrac{3}{4}\)

Vậy ta có đpcm

3 tháng 4 2018

Áp dụng BĐT AM-Gm: ( dạng \(\dfrac{1}{x+y+z}\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\))

\(VT=\sum\dfrac{ab}{\left(a+c\right)+\left(b+c\right)+2b}\le\dfrac{1}{9}\left(\sum\dfrac{a}{2}+\sum\left[\dfrac{ab}{a+c}+\dfrac{bc}{a+c}\right]\right)\)

\(=\dfrac{1}{9}\left(\dfrac{a+b+c}{2}+a+b+c\right)=\dfrac{1}{6}\left(a+b+c\right)\)

\(\le\dfrac{1}{6}\sqrt{3\left(a^2+b^2+c^2\right)}=1\) (đpcm)

Dấu = xảy ra khi a=b=c=2

10 tháng 6 2017

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\dfrac{1}{ab+a+2}=\dfrac{1}{ab+1+a+1}\le\dfrac{1}{4}\left(\dfrac{1}{ab+1}+\dfrac{1}{a+1}\right)\)

\(=\dfrac{1}{4}\left(\dfrac{abc}{ab+abc}+\dfrac{1}{a+1}\right)=\dfrac{1}{4}\left(\dfrac{abc}{ab\left(c+1\right)}+\dfrac{1}{a+1}\right)=\dfrac{1}{4}\left(\dfrac{c}{c+1}+\dfrac{1}{a+1}\right)\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\dfrac{1}{bc+b+2}\le\dfrac{1}{4}\left(\dfrac{a}{a+1}+\dfrac{1}{b+1}\right);\dfrac{1}{ca+c+2}\le\dfrac{1}{4}\left(\dfrac{b}{b+1}+\dfrac{1}{c+1}\right)\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\le\dfrac{1}{4}\left(\dfrac{a+1}{a+1}+\dfrac{b+1}{b+1}+\dfrac{c+1}{c+1}\right)=\dfrac{1}{4}\cdot3=\dfrac{3}{4}\)

Đẳng thức xảy ra khi \(a=b=c=1\)

10 tháng 6 2017

nhấn vào!!!!!

4 tháng 4 2017

Theo hệ quả của bất đẳng thức Cauchy

\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Rightarrow3\ge ab+bc+ca\)

\(\Rightarrow\left\{{}\begin{matrix}3+a^2\ge\left(a+c\right)\left(a+b\right)\\3+b^2\ge\left(a+b\right)\left(b+c\right)\\3+c^2\ge\left(a+c\right)\left(b+c\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{bc}{\sqrt{3+a^2}}\le\dfrac{bc}{\sqrt{\left(a+c\right)\left(a+b\right)}}\\\dfrac{ca}{\sqrt{3+b^2}}\le\dfrac{ca}{\sqrt{\left(a+b\right)\left(b+c\right)}}\\\dfrac{ab}{\sqrt{3+c^2}}\le\dfrac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}\end{matrix}\right.\)

\(\Rightarrow VT\le\dfrac{bc}{\sqrt{\left(a+c\right)\left(a+b\right)}}+\dfrac{ca}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)

\(\Leftrightarrow VT\le\sqrt{\dfrac{b^2c^2}{\left(a+c\right)\left(a+b\right)}}+\sqrt{\dfrac{c^2a^2}{\left(a+b\right)\left(b+c\right)}}+\sqrt{\dfrac{a^2b^2}{\left(a+c\right)\left(b+c\right)}}\) (1)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{\dfrac{b^2c^2}{\left(a+c\right)\left(a+b\right)}}\le\dfrac{\dfrac{bc}{a+c}+\dfrac{bc}{a+b}}{2}\\\sqrt{\dfrac{c^2a^2}{\left(a+b\right)\left(b+c\right)}}\le\dfrac{\dfrac{ca}{a+b}+\dfrac{ca}{b+c}}{2}\\\sqrt{\dfrac{a^2b^2}{\left(a+c\right)\left(b+c\right)}}\le\dfrac{\dfrac{ab}{a+c}+\dfrac{ab}{b+c}}{2}\end{matrix}\right.\)

\(\Rightarrow\sqrt{\dfrac{b^2c^2}{\left(a+c\right)\left(a+b\right)}}+\sqrt{\dfrac{c^2a^2}{\left(a+b\right)\left(b+c\right)}}+\sqrt{\dfrac{a^2b^2}{\left(a+c\right)\left(b+c\right)}}\le\dfrac{\left(\dfrac{bc}{a+c}+\dfrac{ab}{a+c}\right)+\left(\dfrac{bc}{a+b}+\dfrac{ca}{a+b}\right)+\left(\dfrac{ab}{b+c}+\dfrac{ca}{b+c}\right)}{2}\)

\(\Rightarrow\sqrt{\dfrac{b^2c^2}{\left(a+c\right)\left(a+b\right)}}+\sqrt{\dfrac{c^2a^2}{\left(a+b\right)\left(b+c\right)}}+\sqrt{\dfrac{a^2b^2}{\left(a+c\right)\left(b+c\right)}}\le\dfrac{a+b+c}{2}=\dfrac{3}{2}\) (2)

Xét \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)

\(\Leftrightarrow\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ab}+\dfrac{c^2}{ca+bc}\)

Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức

\(\Rightarrow\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ab}+\dfrac{c^2}{ca+bc}\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)

Theo hệ quả của bất đẳng thức Cauchy

\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Rightarrow\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\dfrac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\dfrac{3}{2}\)

\(\Rightarrow\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ab}+\dfrac{c^2}{ca+bc}\ge\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\ge\dfrac{3}{2}\) (3)

Từ (1) , (2) , (3)

\(\Rightarrow VT\le\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)

\(\Leftrightarrow\dfrac{bc}{\sqrt{a^2+3}}+\dfrac{ca}{\sqrt{b^2+3}}+\dfrac{ab}{\sqrt{c^2+3}}\le\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\) (đpcm)

Dấu " = " xảy ra khi \(a=b=c=1\)

9 tháng 8 2017

Đặt \(T=\left(a+b\right)\left(b+c\right)\left(c+a\right)>0\)

\(BDT\Leftrightarrow\dfrac{a^2+bc}{b+c}+\dfrac{b^2+ca}{c+a}+\dfrac{c^2+ab}{a+b}\ge a+b+c\)

\(\Leftrightarrow\dfrac{a^2+bc}{b+c}-a+\dfrac{b^2+ca}{c+a}-b+\dfrac{c^2+ab}{a+b}-c\ge0\)

\(\Leftrightarrow\dfrac{a^2+bc-ab-ac}{b+c}+\dfrac{b^2+ac-ab-bc}{a+c}+\dfrac{c^2+ab-ac-bc}{a+b}\ge0\)

\(\Leftrightarrow\dfrac{\left(a-b\right)\left(a-c\right)}{b+c}+\dfrac{\left(b-a\right)\left(b-c\right)}{a+c}+\dfrac{\left(c-a\right)\left(c-b\right)}{a+b}\ge0\)

\(\Leftrightarrow\dfrac{\left(a^2-b^2\right)\left(a^2-c^2\right)+\left(b^2-a^2\right)\left(b^2-c^2\right)+\left(c^2-a^2\right)\left(c^2-b^2\right)}{T}\ge0\)

\(\Leftrightarrow\dfrac{a^4+b^4+c^4-b^2c^2-c^2a^2-a^2b^2}{T}\ge0\)

\(\Leftrightarrow\dfrac{\left(a^2-b^2\right)^2+\left(b^2-c^2\right)^2+\left(c^2-a^2\right)^2}{2T}\ge0\)

Xảy ra khi \(a=b=c\)

10 tháng 8 2017

\(BĐT\Leftrightarrow\sum\left(\dfrac{1}{a}-\dfrac{b+c}{a^2+bc}\right)\ge0\)

\(\Leftrightarrow\sum\dfrac{\left(a-b\right)\left(a-c\right)}{a\left(a^2+bc\right)}\ge0\)

Giả sử \(a\ge b\ge c\)thì

\(\dfrac{\left(a-b\right)\left(a-c\right)}{a\left(a^2+bc\right)}\ge0\).vậy nên chỉ cần chứng minh

\(\dfrac{\left(b-c\right)\left(b-a\right)}{b\left(b^2+ac\right)}+\dfrac{\left(c-a\right)\left(c-b\right)}{c\left(c^2+ab\right)}\ge0\)

\(\Leftrightarrow\left(b-c\right)\left[\dfrac{b-a}{b\left(b^2+ac\right)}+\dfrac{a-c}{c\left(c^2+ab\right)}\right]\ge0\)

\(\Leftrightarrow\left(b-c\right)\left[\left(b-a\right)\left(c^3+abc\right)+\left(a-c\right)\left(b^3+abc\right)\right]\ge0\)

\(\Leftrightarrow\left(b-c\right)^2\left(b+c\right)\left(ab+ac-bc\right)\ge0\)( đúng vì \(a\ge b\ge c\))

Vậy BĐT được chứng minh.

Dấu = xảy ra khi a=b=c

NV
8 tháng 4 2021

\(\Leftrightarrow\left(1+ab+bc+ca\right)\left(\dfrac{1}{\left(a+b\right)\left(a+c\right)}+\dfrac{1}{\left(a+b\right)\left(b+c\right)}+\dfrac{1}{\left(a+c\right)\left(b+c\right)}\right)\le\dfrac{ab+bc+ca}{abc}\)

\(\Leftrightarrow\dfrac{2\left(1+ab+bc+ca\right)\left(a+b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{ab+bc+ca}{abc}\)

\(\Leftrightarrow\dfrac{2\left(1+ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{ab+bc+ca}{abc}\)

Áp dụng BĐT quen thuộc:

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\dfrac{8}{9}\left(ab+bc+ca\right)\left(a+b+c\right)=\dfrac{8}{9}\left(ab+bc+ca\right)\)

\(\Rightarrow\dfrac{2\left(1+ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{9\left(1+ab+bc+ca\right)}{4\left(ab+bc+ca\right)}\)

Ta chỉ cần chứng minh:

\(\dfrac{9\left(1+ab+bc+ca\right)}{4\left(ab+bc+ca\right)}\le\dfrac{ab+bc+ca}{abc}\)

\(\Leftrightarrow4\left(ab+bc+ca\right)^2\ge9abc+9abc\left(ab+bc+ca\right)\)

Do \(3\left(ab+bc+ca\right)^2\ge9abc\left(a+b+c\right)=9abc\)

Nên ta chỉ cần chứng minh:

\(\left(ab+bc+ca\right)^2\ge9abc\left(ab+bc+ca\right)\)

\(\Leftrightarrow ab+bc+ca\ge9abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge9\)

Hiển nhiên đúng do \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}=9\)

6 tháng 4 2017

Bài 1:

Dự đoán dấu "=" xảy ra khi \(a=b=c=1\) ta tính được giá trị là \(9\)

Ta sẽ chứng minh nó là GTLN

Thật vậy ta cần chứng minh

\(\Sigma\dfrac{11a+4b}{4a^2-ab+2b^2}\le\dfrac{3\left(ab+ac+bc\right)}{abc}\)

\(\LeftrightarrowΣ\left(\dfrac{3}{a}-\dfrac{11a+4b}{4a^2-ab+2b^2}\right)\ge0\)

\(\LeftrightarrowΣ\dfrac{\left(a-b\right)\left(a-6b\right)}{a\left(4a^2-ab+2b^2\right)}\ge0\)

\(\LeftrightarrowΣ\left(\dfrac{\left(a-b\right)\left(a-6b\right)}{a\left(4a^2-ab+2b^2\right)}+\dfrac{1}{b}-\dfrac{1}{a}\right)\ge0\)

\(\LeftrightarrowΣ\dfrac{\left(a-b\right)^2\left(a+b\right)}{ab\left(4a^2-ab+2b^2\right)}\ge0\) (luôn đúng)

Bài 2:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(a^5+b^2+c^2\right)\left(\dfrac{1}{a}+b^2+c^2\right)\ge\left(a^2+b^2+c^2\right)^2\)

\(\Rightarrow\dfrac{1}{a^5+b^2+c^2}\le\dfrac{\dfrac{1}{a}+b^2+c^2}{\left(a^2+b^2+c^2\right)^2}\)

Tương tự rồi cộng theo vế ta có:

\(Σ\dfrac{1}{a^5+b^2+c^2}\le\dfrac{Σ\dfrac{1}{a}+2Σa^2}{\left(a^2+b^2+c^2\right)^2}\)

Ta chứng minh \(Σ\dfrac{1}{a}+2\left(a^2+b^2+c^2\right)\le3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\) - BĐT cuối đúng

Vậy ta có ĐPCM. Dấu "=" xảy ra khi \(a=b=c=1\)

Bài 3:

Từ \(a+b+c=3abc\Rightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=3\)

Đặt \(\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)\rightarrow\left(x;y;z\right)\)\(\Rightarrow xy+yz+xz=3\) và BĐT cần chứng minh là

\(x^3+y^3+z^3\ge3\). Áp dụng BĐT AM-GM ta có:

\(x^3+x^3+1\ge3\sqrt[3]{x^3\cdot x^3\cdot1}=3x^2\)

Tương tự có: \(y^3+y^3+1\ge3y^2;z^3+z^3+1\ge3z^2\)

Cộng theo vế 3 BĐT trên ta có:

\(2\left(x^3+y^3+z^3\right)+3\ge3\left(x^2+y^2+z^2\right)\)

Lại có BĐT quen thuộc \(x^2+y^2+z^2\ge xy+yz+xz\)

\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge3\left(xy+yz+xz\right)=9\left(xy+yz+xz=3\right)\)

\(\Rightarrow2\left(x^3+y^3+z^3\right)+3\ge9\Rightarrow2\left(x^3+y^3+z^3\right)\ge6\)

\(\Rightarrow x^3+y^3+z^3\ge3\). BĐT cuối đúng nên ta có ĐPCM

Đẳng thức xảy ra khi \(a=b=c=1\)

T/b:Vâng, rất giỏi :GT8:

4 tháng 4 2017

lần sau đăng từng câu 1 dc ko bn :)