\(\dfrac{1+cos\alpha}{1-cos\alpha}\) \(-\)  ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
14 tháng 8 2019

Lời giải:
\(\frac{1+\cos a}{1-\cos a}-\frac{1-\cos a}{1+\cos a}=\frac{(1+\cos a)^2-(1-\cos a)^2}{(1-\cos a)(1+\cos a)}=\frac{1+2\cos a+\cos ^2a-(1-2\cos a+\cos ^2a)}{1-\cos ^2a}\)

\(=\frac{4\cos a}{\sin ^2a}=\frac{\frac{4\cos a}{\sin a}}{\sin a}=\frac{4\cot a}{\sin a}\) (đpcm)

AH
Akai Haruma
Giáo viên
14 tháng 8 2019

Lời giải:

Vì $\tan a=\frac{\sin a}{\cos a}$ xác định nên $\cos a\neq 0$. Do đó:

\(A=\frac{\sin a+\cos a}{\cos a-\sin a}=\frac{\frac{\sin a+\cos a}{\cos a}}{\frac{\cos a-\sin a}{\cos a}}=\frac{\frac{\sin a}{\cos a}+1}{1-\frac{\sin a}{\cos a}}=\frac{\tan a+1}{1-\tan a}=\frac{\frac{1}{2}+1}{1-\frac{1}{2}}=3\)

27 tháng 8 2020

\(tana=\frac{1}{2}\)  

\(\Rightarrow\frac{sina}{cosa}=\frac{1}{2}\)     

\(2sina=cosa\) 

\(A=\frac{sina+cosa}{cosa-sina}\)                  

\(=\frac{sina+2sina}{2sina-sina}\)       

\(=\frac{3sina}{sina}=3\)

10 tháng 8 2018

         Giả sử\(\Delta ABC\)vuông tại A có AB = c ; AC = b ; BC = a và \(\widehat{B}=\alpha\)

\(\Rightarrow b^2+c^2=a^2\left(Py-ta-go\right)\)

 Xét tam giác ABC vuông tại A có \(sinB=sin\alpha=\frac{AC}{BC}=\frac{b}{a}\)

                                                       \(cosB=cos\alpha=\frac{AB}{BC}=\frac{c}{a}\)

                                                    \(tg\alpha=\frac{AC}{BC}=\frac{b}{a}\)

                                                \(cotg\alpha=\frac{BC}{AC}=\frac{a}{b}\)

\(a,sin^2\alpha+cos^2\alpha=\frac{b^2}{a^2}+\frac{c^2}{a^2}=\frac{b^2+c^2}{a^2}=\frac{a^2}{a^2}=1\)

b, \(tg\alpha.cotg\alpha=\frac{b}{a}.\frac{a}{b}=1\)

Câu c chưa ra @@ Sry nha!

16 tháng 7 2018

Ta có:

\(sin=\dfrac{doi}{huyen}\); \(cos=\dfrac{ke}{chuyen}\);\(tan=\dfrac{doi}{ke}\); \(cot=\dfrac{ke}{doi}\)

Dùng cái này làm được hết mấy câu đó.

16 tháng 7 2018

nếu bn thấy dùng cách của hùng có hới dài thì bn chỉ cần sử dụng cách đó cho 3 ý trên thôi . còn 3 ý dưới bn có thể sử dụng công thức \(sin^2x+cos^2x=1\) vừa chứng minh xong để giải quyết .

AH
Akai Haruma
Giáo viên
1 tháng 10 2020

Lời giải:
Đặt $\sin a=x; \cos a=y$. Ta có hệ sau:

\(\left\{\begin{matrix} ab=\frac{1}{2}\\ a^2+b^2=1\end{matrix}\right.\Rightarrow a^2+b^2=2ab\)

$\Leftrightarrow a^2+b^2-2ab=0$

$\Leftrightarrow (a-b)^2=0\Leftrightarrow a=b$.

$\Leftrightarrow \sin a=\cos a$

$\Rightarrow a=45^0$

26 tháng 8 2019

Đặt AM = a ; AN = b thì AB = 3a ; AC = 3b

Áp dụng định lý Py-ta-go vào các tam giác vuông ABN và ACM , ta có :

\(AB^2+AN^2 = BN^2 ; AM^2 + AC^2 = CM^2\)

\(\Rightarrow\) \(9a^2 +b^2 = sin^2\alpha ; a^2 +9b^2 = cos^2\alpha\)

Do đó : \(10(a^2+b^2) = sin^2\alpha + cos^2\alpha = 1\)

\(a^2+b^2 = \dfrac{1}{10}\)

Ta có : \(BC^2 = (3a)^2 + (3b)^2 \)

\(BC^2 = 9(a^2+b^2) \)

\(BC^2 = \dfrac{9}{10}\)

\(\Leftrightarrow\) \(BC= \sqrt{\dfrac{9}{10}}\)

\(\Rightarrow\) \(BC = \dfrac{3}{10} \sqrt{10}\)

6 tháng 8 2018

ta có : \(A=cot\alpha+\dfrac{sin\alpha}{1+cos\alpha}=\dfrac{cos\alpha}{sin\alpha}+\dfrac{sin\alpha}{1+cos\alpha}\)

\(=\dfrac{cos\alpha\left(1+cos\alpha\right)+sin^2\alpha}{sin\alpha\left(1+cos\alpha\right)}=\dfrac{cos\alpha+cos^2\alpha+sin^2\alpha}{sin\alpha\left(1+cos\alpha\right)}\)

\(=\dfrac{1+cos\alpha}{sin\alpha\left(1+cos\alpha\right)}=\dfrac{1}{sin\alpha}\)

6 tháng 8 2019

A B C H a)theo tỉ số lượng giác ta có: tan a= AC/AB (1)

sin a= AC/BC

cos a= AB/BC

-> sin a * cos a= AC/BC : BC/AB= AC/AB (2)

Từ (1) (2) ta có tan a = sina / cos a

6 tháng 8 2019

bạn có cần gấp ko