Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ a3 - b3 \(\ge\)3a2b - 3ab2
<=> a3 - b3 - 3ab(a - b) \(\ge0\)
<=> (a - b)3 \(\ge0\)(đúng)
b/ \(a^2+b^2+c^2\ge a+b+c-\frac{3}{4}\)
\(\Leftrightarrow\left(a^2-a+\frac{1}{4}\right)+\left(b^2-b+\frac{1}{4}\right)+\left(c^2-c+\frac{1}{4}\right)\ge0\)
\(\Leftrightarrow\left(a-\frac{1}{2}\right)^2+\left(b-\frac{1}{2}\right)^2+\left(c-\frac{1}{2}\right)^2\ge0\)
=> ĐPCM
lần sau gõ từ với ko có mất thời gian bn ký hiệu \(\gamma\) ng` ta hiểu thành kí hiệu tia Gamma thì sao
(a-b)^2 + (a-c)^2 = 4(a^2 + b^2 + c^2 - ab - bc - ca)
a^2 - 2ab + b^2 + a^2 - 2ac + c^2 = 4a^2 + 4b^2 + 4c^2 - 4ab - 4bc - 4ca
- 2a^2 - 3b^2 - 3c^2 - 2ab - 2ac = - 4ab - 4bc - 4ac
2a^2 + 3b^2 + 3c^2 + 2ab + 2ac = 4ab + 4bc + 4ca
2a^2 + 3b^2 + 3c^2 = 2ab + 4bc + 2ac
(a-b)^2 + (b-c)^2 + (a-c)^2 = 0 [ đoạn này hơi tắt]
mà (a-b)^2 ; (b-c)^2 ; (a-c)^2 > hoặc = 0
=> a = b = c
mik nha
\(VT=\left(a+b+c\right)^2+a^2+b^2+c^2=2a^2+2b^2+2c^2+2ab+2bc+2ac\)(1)
\(VP=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2=a^2+2ab+b^2+b^2+2bc+c^2+c^2+2ac+a^2=2a^2+2b^2+2c^2+2ab+2bc+2ac\)
(2)
Từ (1) và (2) => VT= VP
Hình như có cả abc khac 0 nữa mà nếu như z thì giải nè
Từ a+b+c=0 =>a= - (b+c)
a^2 = (b+c)^2
b= - (a+c)
b^2= (a+c)^2
c= - (a+b)
c^2=(a+b)^2
M= 1/a^2+b^2-(a+b)^2 + 1/a^2+c^2-(a+c)^2 + 1/b^2+c^2-(b+c)^2
M= 1/-2ab + 1/-2ac + 1/-2bc
M= -c/2abc + -b/2abc + -a/2abc
M= -(a+b+c)/2abc
mà a+b+c=0
Vậy M=0
\(có.a+b+c=0=>a+b=-c=>\left(a+b\right)^2=\left(-c\right)^2=>a^2+2ab+b^2=c^2=>a^2+b^2-c^2=-2ab\)
Tương tự ta có \(a^2+c^2-b^2=-2ac\)
\(b^2+c^2-a^2=-2bc\)
Do đó \(M=\frac{1}{-2ab}+\frac{1}{-2ac}+\frac{1}{-2bc}=\frac{-1}{2ab}+\frac{-1}{2ac}+\frac{-1}{2bc}=\frac{-c}{2abc}+\frac{-b}{2abc}+\frac{-a}{abc}=\frac{-c-b-a}{2abc}=\frac{-\left(a+b+c\right)}{2abc}=0\left(do.a+b+c=0\right)\)
e)
\(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\) ( luôn đúng)
=> ĐPCM
Lại copy!!!
Giải:
Áp dụng BĐT Bunhiacopski
Xét cặp số \(\left(1,1,1\right)\) và \(\left(a,b,c\right)\) ta có:
\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(1.a+1.b+1.c\right)^2\)
\(\Rightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2\left(ab+bc+ac\right)\)
\(\Rightarrow a^2+b^2+c^2\ge ab+ac+bc\) (Đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
Lời giải:
a)
Xét hiệu \(\frac{a^3}{b}-(a^2+ab-b^2)=(\frac{a^3}{b}-a^2)-(ab-b^2)\)
\(=\frac{a^3-a^2b}{b}-b(a-b)=\frac{a^2(a-b)}{b}-b(a-b)=(a-b)\left(\frac{a^2}{b}-b\right)\)
\(=(a-b).\frac{a^2-b^2}{b}=\frac{(a-b)^2(a+b)}{b}\geq 0, \forall a,b>0\)
Do đó \(\frac{a^3}{b}\geq a^2+ab-b^2\) (đpcm)
Dấu "=" xảy ra khi $a=b$
b)
Áp dụng BĐT Cauchy cho các số dương:
\(\frac{a^3}{b}+ab\geq 2a^2\)
\(\frac{b^3}{c}+bc\geq 2b^2\)
\(\frac{c^3}{a}+ac\geq 2c^2\)
Cộng theo vế:
\(\Rightarrow \frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\geq 2(a^2+b^2+c^2)-(ab+bc+ac)\)
Mà cũng theo BĐT Cauchy:
\(a^2+b^2+c^2=\frac{a^2+b^2}{2}+\frac{b^2+c^2}{2}+\frac{c^2+a^2}{2}\geq \frac{2ab}{2}+\frac{2bc}{2}+\frac{2ca}{2}=ab+bc+ca\)
\( \Rightarrow \frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\geq 2(a^2+b^2+c^2)-(ab+bc+ac)\geq 2(ab+bc+ac)-(ab+bc+ac)=ab+bc+ac\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$
b) Áp dụng bđt bunhiacopxki ta có:
\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(1.a+1.b+1.c\right)^2=\left(a+b+c\right)^2\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Rightarrow a^2+b^2+c^2+d^2+2\left(ab+bc+dc+ad\right)=4\)(*)
Có 2(ab+bc+dc+ad)<=2(a^2+b^2+c^2+d^2 )(**)
Cộng 2 vế của (**) cho a^2+b^2+c^2+d^2 có
3(a^2+b^2+c^2+d^2)>=4