Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=19n^n +5n^2 +1890n +2006
m =n -1 ; n>1 => m >0
A=19(m+1)^(m+1) + 5(m+1)^2 +1890(m+1) +2006
A=19(m+1)^(m+1) + 5 (m^2 +2m+1) +1890 m+ 1890 +2006
m =1 phần dư =0
m >=2
\(\left(m+1\right)^{m+1}=\left(m+1-1\right)\left[\left(m+1\right)^{\left(m+1\right)-1}+..\left(m+1\right)+1\right]=m.f\left(m\right)=m^2.g\left(n\right)+2m\)
\(A=m^2\left[19.g\left(n\right)+5\right]+\left(2.19+10+1890\right)m+1890+2006\)
phân dư A chia cho [m^2 =(n-1)^2 ]:
R=1938n +68
\(A=n^6-n^4+2n^3+2n^2\)
\(=n^2\left(n^4-n^2+2n+2\right)=n^2[n^2\left(n^2-1\right)+2\left(n+1\right)]\)
\(=n^2\left[\left(n+1\right)\left(n^3-n+2\right)\right]=n^2\left(n+1\right)\left[\left(n^3+1\right)-\left(n^2-1\right)\right]\)
\(=n^2\left(n+1\right)\left(n+1\right)\left(n^2-2n+2\right)=n^2\left(n+1\right)^2\left(n^2-2n+2\right)\)
Xét \(n^2-2n+2\)
Ta có: \(n^2-2n+2=n^2-2n+1+1=\left(n-1\right)^2+1>\left(n-1\right)^2\)
Lại có: \(n^2-2n+2=n^2-\left(2n-2\right)< n^2\)
\(\Rightarrow\left(n-1\right)^2< n^2-2n+2< n^2\)
Mà \(\left(n-1\right)^2;n^2\)là hai số chính phương liên tiếp.
\(\Rightarrow n^2-2n+2\)không thể là số chính phương.
\(\Rightarrow n^2\left(n+1\right)^2\left(n^2-2n+2\right)\)không thể là số chính phương.
Vậy A không là số chính phương.
n6 - n4 + 2n3 + 2n2
= n2 . (n4 - n2 + 2n +2)
= n2 . [n2(n - 1)(n + 1) + 2(n + 1)]
= n2 . [(n + 1)(n3 - n2 + 2)]
= n2 . (n + 1) . [(n3 + 1) - (n2 - 1)]
= n2. (n + 1)2 . (n2 - 2n + 2)
Với n ∈ N, n > 1 thì n2 - 2n + 2 = (n - 1)2 + 1 > (n - 1)2
Và n2 - 2n + 2 = n2 - 2(n - 1) < n2
Vậy (n - 1)2 < n2 - 2n + 2 < n2
=> n2 - 2n + 2 không phải là một số chính phương.
n6 - n4 + 2n3 + 2n2
= n2 . (n4 - n2 + 2n +2)
= n2 . [n2(n - 1)(n + 1) + 2(n + 1)]
= n2 . [(n + 1)(n3 - n2 + 2)]
= n2 . (n + 1) . [(n3 + 1) - (n2 - 1)]
= n2. (n + 1)2 . (n2 - 2n + 2)
Với n ∈ N, n > 1 thì n2 - 2n + 2 = (n - 1)2 + 1 > (n - 1)2
Và n2 - 2n + 2 = n2 - 2(n - 1) < n2
Vậy (n - 1)2 < n2 - 2n + 2 < n2
=> n2 - 2n + 2 không phải là một số chính phương.