Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thật vậy 1/22 < 1/1.2
1/23 < 1/2.3
........................
1/20122 < 1/2011.2012
1/20132 < 1/2012.2013
1/22 + 1/22 + .....+1/20122 + 1/20132 < 1/1.2+1/2.3+ .... +1/2011.2012 + 1/2012.2013 (1)
Mà 1/1.2+1/2.3+ .... +1/2011.2012 + 1/2012.2013
= 1 - 1/2 + 1/2 - 1/3 + .....+ 1/2011 - 1/2012 + 1/2012 - 1/2013
= 1 - 1/2013
= 2012/2013 < 1 (2)
Từ (1) và (2) => A<1
1. Ta có :
\(4A=\frac{2^2\left(2^{18}-3\right)}{2^{20}-3}=\frac{2^{20}-12}{2^{20}-3}=\frac{2^{20}-3-9}{2^{20}-3}=\frac{2^{20}-3}{2^{20}-3}-\frac{9}{2^{20}-3}=1-\frac{9}{2^{20}-3}\)
\(4B=\frac{2^2\left(2^{20}-3\right)}{2^{22}-3}=\frac{2^{22}-12}{2^{22}-3}=\frac{2^{22}-3-9}{2^{22}-3}=\frac{2^{22}-3}{2^{22}-3}-\frac{9}{2^{22}-3}=1-\frac{9}{2^{22}-3}\)
Vì \(2^{20}-3< 2^{22}-3\)
\(\Leftrightarrow\frac{9}{2^{20}-3}>\frac{9}{2^{22}-3}\)
\(\Leftrightarrow1-\frac{9}{2^{20}-3}< 1-\frac{9}{2^{22}-3}\)
\(\Leftrightarrow4A< 4B\)
\(\Leftrightarrow A< B\)
Vậy...
b/ Tương tự
\(\frac{1}{2^2}=\frac{1}{2.2}<\frac{1}{1.2};\frac{1}{3^2}=\frac{1}{3.3}<\frac{1}{2.3};...;\frac{1}{2012^2}=\frac{1}{2012.2012}<\frac{1}{2011.2012}\)
\(=>\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2012^2}<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+..+\frac{1}{2011.2012}\)
\(=>\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2012^2}<\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+..+\frac{1}{2011}-\frac{1}{2012}=\frac{1}{1}-\frac{1}{2012}=\frac{2011}{2012}<1\)
=>đpcm
Ta có 1<2
=>1.2<2^2
=>1/(2^2)<1/(1.2)
tương tự chứng minh 1/3^2<1/(2.3)
......
1/2013^2<1/(2012.2013)
=>1/2^2+1/3^2+...+1/2013^2<1/(1.2)+1/(...
=>1/2^2+1/3^2+...+1/2013^2<1-1/2+1/2-1...
=>1/2^2+1/3^2+...+1/2013^2<1-1/2013 (1)
Do 1/2013>0
=>1-1/2013<1 (2)
Từ (1),(2)=> 1/2^2+1/3^2+...+1/2013^2<1