K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2017

minh chi lam dc cau a thoi nha nhung hay t i c k cho minh

3 + 32 = 12 chia het cho 4  3 + 32 + 33 + .......+39 + 310 = 30 .[ 3+32 ] + 32 . [ 3 + 3] + ....+38 . [ 3 + 32 ]

=30 . 12 + 3 . 12 +.....+ 38 . 12 = 12.[3+ 32 +....+ 38 ] 

vi 12 chia het cho 4 nen 12 nhan voi so tu nhien nao thi so do cung chia het cho 4 nen A chia het cho 4

10 tháng 12 2017

hghjhgjhgjh

20 tháng 12 2017

S=\(\left(2+2^2\right)+\left(2^3+2^4\right)\)+......+\(\left(2^{99}+2^{100}\right)\)

=2(

3 tháng 2 2018

A = 2 + 22 + 23 +...+ 2100
<=> A = ( 2+22 ) + ( 23+24 ) +...+( 299 + 2100 )
<=> A = 6+ 22 ( 2+22 )+ ...+ 298 (2+22 )
<=> A = 6+ 22 .6+ ...+ 298 .6
<=> A = 6.(22+...+298 ) chia hết cho 3 ( vì 6 chia hết cho 3)

13 tháng 11 2018

\(S=2+2^2+2^3+2^4+....+2^{99}+2^{100}\)

\(S=2.\left(2+2^2\right)+.....+2^{99}.\left(2+2^2\right)\)

\(S=2.6+.....+2^{99}.6\)

\(S=6.\left(2+2^{99}\right)⋮6\)

\(\Rightarrow S⋮6\)

13 tháng 11 2018

ta có :

2 + 22 + 23 + ....... + 299 + 2100 = a

21 + 22 + ...+ 2100  + 2101 = 2a

=> a = 2101 -   2 

( hình như vậy , dạng rút gọn này mik chỉ nhớ máng máng , sai thôi xin thứ lỗi )

12 tháng 8 2018

a) Đặt biểu thức trên là A, ta có:

A = 21 + 22 + 23 + 24 + ... + 299 + 2100

=> A = (21 + 22) + (23 + 24) + ... + (299 + 2100)

=> A = 21.(1 + 2) + 23.(1 + 2) + ... + 299.(1 + 2)

=> A = 21.3 + 23.3 + ... + 299.3

=> A = 3(21 + 23 + ... + 299)

=> A ⋮ 3

\(26=13.2\)

\(s=3.\left(1+3+9\right)+3^4.\left(1+3+9\right)+....+3^{2012}.\left(1+3+9\right)\)

\(s=3.13+3^413+.....+3^{2012}.13\)

\(s=13.\left(3+3^4+....+3^{2012}\right)\)

\(\Rightarrow s=3.\left(1+3\right)+3^3.\left(1+3\right)+.......+3^{2015}.\left(1+3\right)\)

\(s=3.4+3^3.4+....+3^{2015}.4\)

\(s=4.\left(3+3^3+.....+3^{2015}\right)\)

\(\Rightarrow4⋮2\Rightarrow4.\left(3+3^3+....+3^{2015}\right)⋮2\)

\(\Rightarrow s⋮2\Leftrightarrow s⋮13\)

\(\Rightarrow s⋮\orbr{\begin{cases}13\\2\end{cases}}\Leftrightarrow s⋮26\)

19 tháng 1 2017

Ta có: 155 = 5.31 ta chứng minh A chia hết cho 5 và 31

+ Chứng minh A chia hết cho 5

\(A=2+2^2+2^3+2^4+...+2^{99}+2^{100}\)

\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(=2\left(1+2+4+8\right)+2^5\left(1+2+4+8\right)+...+2^{97}\left(1+2+4+8\right)\)

\(=15\left(2+2^5+...+2^{97}\right)=3.5.\left(2+2^5+...+2^{97}\right)\)

\(\Rightarrow A⋮5\left(1\right)\)

+ Chứng minh A chia hết cho 31

\(A=2+2^2+2^3+2^4+...+2^{99}+2^{100}\)

\(=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(=2\left(1+2+4+8+16\right)+2^6\left(1+2+4+8+16\right)+...+2^{96}\left(1+2+4+8+16\right)\)

\(=31\left(2+2^6+...+2^{96}\right)\)

\(\Rightarrow A⋮31\left(2\right)\)

Từ (1) và (2) \(\Rightarrow A⋮\left(31.5\right)hayA⋮155\)

6 tháng 2 2016

a ) S = 4 + 42 + 43 + 44 + ..... + 499 + 4100

S = ( 4 + 42 ) + ( 43 + 44 ) + .... + ( 497 + 498 ) + ( 499 + 4100 )

⇒ S = 4.( 1 + 4 ) + 43.( 1 + 4 ) + ...... + 497.( 1 + 4 ) + 499.( 1 + 4 )

⇒ S = 4.5 + 43.5 + ..... + 497.5 + 499.5

⇒ S = 5.( 4 + 43 + ..... + 497 + 499 )

Vì 5 ⋮ ⋮ 5 ( đpcm )

Câu b tương tự .

 

6 tháng 2 2016

Làm theo công thức nhé!!

Mình chỉ biết làm ý a thôi :)

S = 21 + 22 + 23 + ... + 299 + 2100

S = ( 21 + 22 ) + ... + ( 299 + 2100 )

S = 21( 1 + 2 ) + ... + 299 ( 1 + 2 )

S = 21 . 3 + ... + 299 . 3

S = 3( 21 + ... + 299 ) chia hết cho 3