Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=(5+52+53+54+55+56)+...+(591+592+593+594+595+596)S=(5+52+53+54+55+56)+...+(591+592+593+594+595+596)
=5(1+5+52+53+54+55)+...+591(1+52+53+54+55)=5.3906+...+591.3906=3906(5+...+596)=3.126(5+...+591)=5(1+5+52+53+54+55)+...+591(1+52+53+54+55)=5.3906+...+591.3906=3906(5+...+596)=3.126(5+...+591)
chia hết cho 126
Xin lỗi nha bạn , mình viết dấu mũ không được
1a. ( 210 + 1 )10 chia hết cho 125 = ( 1024 + 1 ) 10 chia hết cho 125 = 102510 chia hết cho 125
Ta có : 1025 : 125 = 8.2 nên 102510 không thể chia hết cho 125 vì a chia hết cho b thì a nhân x chia hết cho b
1b. 102018 + 53 chia hết cho 9 = ( 1 + 0 + 0 + 0 + ... ) + 125 = 1 + 8 = 9 nên 102018 + 53 chia hết cho 9
2. x = 1 vì A =( 1 + 3 ) + ( 1 + 7 ) + ( 1 + 11 ) = 4 + 8 + 12 = 24
Đây là đáp án mình làm thao khả năng của mk. Với lại câu 2 ko ghi rõ nên mk ko thể là chắc chắn đc
S=5+5^2+5^3+...+5^2004
S=(5+5^4)+(5^2+5^5)+...+(5^2001+5^2004)(có 1007 nhóm)
S=5*(1+5^3)+5^2*(1+5^3)+...+5^2001*(1+5^3)
S=5*126+5^2*126+...+5^2001*126
S=126*(5+5^2+...+5^2001) luôn luôn chia hết cho 126
b) Tổng S có số hạng tử là:
\(\dfrac{\left(96-1\right)}{1}+1\)=96 ( hạng tử)
Vì mỗi hạng tử của tổng S đều có tận cùng là 5 nên: S=\(\overline{A5}.96\)=\(\overline{B0}\)
Vậy chữ số tận cùng của S là 0.
( Có j ko hiểu thì bạn bảo lại mình nha vì mik sợ mình làm khó hiểu)
a) S = 5 + 5 2 + .... + 5 96
5S = 5 2 + 5 3 + ... + 5 97
=> 5S - S = ( 5 2 + 5 3 + ... + 5 97 ) - ( 5 + 5 2 + .... + 5 96 )
=> 4S = 5 97 - 5
=> S = \(\frac{5^{97}-5}{4}\)
b) Ta có ;
S = 5 + 5 2 + .... + 5 96
= ( 5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 ) + ..... + ( 5 90 + 5 91 + 5 92 + 5 93 + 5 94 + 5 95 + 5 96 )
= 5 ( 1 + 5 + 5 2 + 5 3 + 5 4 + 5 5 ) + ..... + 5 90 ( 1 + 5 + 5 2 + 5 3 + 5 4 + 5 5 )
= 5 . 3906 + ... + 5 90 . 3906
= ( 5 + ... + 5 90 ) . 3906
= ( 5 + ... + 5 90 ) . 126 . 31 chia hết cho 126 ( Vì 126 chia hết cho 126 )
Vậy S = 5 + 5 2 + .... + 5 96 chia hết cho 126
a) \(S=5+5^2+5^3+5^4+.......+5^{96}\)
\(\Rightarrow5S=5^2+5^3+5^4+5^5+.........+5^{97}\)
\(\Rightarrow5S-S=5^{97}-5\)
\(\Rightarrow4S=5^{97}-5\)\(\Rightarrow S=\frac{5^{97}-5}{4}\)
b) \(S=5+5^2+5^3+5^4+..........+5^{96}\)
\(=\left(5+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+.....+\left(5^{93}+5^{96}\right)\)
\(=5\left(1+5^3\right)+5^2.\left(1+5^3\right)+5^3.\left(1+5^3\right)+......+5^{93}.\left(1+5^3\right)\)
\(=5\left(1+125\right)+5^2.\left(1+125\right)+5^3.\left(1+125\right)+......+5^{93}.\left(1+5^3\right)\)
\(=5.126+5^2.126+5^3.126+......+5^{93}.126\)
\(=126.\left(5+5^2+5^3+.........+5^{93}\right)⋮126\)( đpcm )
S=5+5^2+5^3+....+5^96=
= 5+5^2+5^3+ 5^4+5^5+5^6....+ +5^91 + 5^92+5^93 +5^94 +5^95 +5^96
=(5+5^2+5^3+ 5^4+5^5+5^6)(1+5^6 + ... +5^90)=
=5* 126*31*(1+5^6 + ... +5^90)= 5* 126*31*(1+5^4 + ... +5^90) chia hết cho 126
\(S=5+5^2+5^3+5^4+...+6^{96}\)
sử dụng phương pháp nhóm ta được:
\(S=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{95}+5^{96}\right)\)
sử dụng phương pháp phân tích đa thức thành nhân tử ta được:
\(S=\left(5+5^2\right)+5^2\left(5+5^2\right)+...+5^{94}\left(5+5^2\right)\)
\(S=30+5^2\cdot30+...+5^{94}\cdot30\)
\(S=30\cdot\left(1+5^5+...+5^{94}\right)⋮10\)
vậy => đpcm
S = 5+52+53+54+...+596
S = (5+52) + (53+ 54)+....+ ( 595+ 596)
S = 30 + 52( 5+ 52) +..... + 594( 5+ 52)
S= 30 + 52.30 + .... + 594. 30
S= 30 ( 1 + 52+...+ 594)
S= [ 10. 3( 1 + 52+...+ 594)] chia hết cho 10
=> S chia hết cho 10
\(S=\left(5+5^4\right)+\left(5^2+5^5\right)+...+\left(5^{93}+5^{96}\right)\)
\(S=5.\left(1+5^3\right)+5^2.\left(1+5^3\right)+...+5^{93}.\left(1+5^3\right)\)
\(S=5.125+5^2.125+...+5^{93}.125\)
\(S=125.\left(5+5^2+...+5^{93}\right)⋮125\)
\(S=5+5^2+5^3+...+5^{96}\)(có 96 số, 96 chia hết cho 6)
\(=\left(5+5^2+5^3+5^4+5^5+5^6\right)+...+\left(5^{91}+5^{92}+5^{93}+5^{94}+5^{95}+5^{96}\right)\)
\(=\left(5+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+...+\left(5^{91}+5^{94}\right)+\left(5^{92}+5^{95}\right)+\left(5^{93}+5^{96}\right)\)
\(=5.\left(1+5^3\right)+5^2.\left(1+5^3\right)+...+5^{92}.\left(1+5^3\right)+5^{93}.\left(1+5^3\right)\)
\(=5.126+5^2.126+5^3.126+...5^{91}.126+5^{92}.126+5^{93}.126\)
\(=126.\left(5+5^2+5^3+...+5^{91}+5^{92}+5^{93}\right)\)chia hết cho 126.
Vậy \(S=5+5^2+5^3+...+5^{96}\)chia hết cho 126.