Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi d là ƯCLN(5n+1;6n+1)
=>5n+1 chia hết cho d =>6(5n+1)chia hết cho d=>30n+6 chia hết cho d
=>6n+1 chia hết cho d =>5(6n+1)chia hết cho d=>30n+5 chia hết cho d
=>(30n+6)-(30n+5)chia hết cho d
=> 1 chia hết cho d
=> d= 1
=>5n+1 và 6n+1 là hai snt cùng nhau
Vậy phân số 5n+1/6n+1 là phân số tối giản
Gọi d là ƯCLN(2n-1;8n-3)
ta có 2n-1\(⋮\)d;8n-3\(⋮\)d
=>4*(2n-1)\(⋮\)d;8n-3\(⋮\)d
=>8n-4\(⋮\)d;8n-3\(⋮\)d
=>[(8n-4)-(8n-3)]\(⋮\)d
=>[8n-4-8n+3]\(⋮\)d
=>-1\(⋮\)d
=>d=1
Vì ƯCLN(2n-1;8n-3)=1 nên phân số \(\frac{2n-1}{8n-3}\) luôn tối giản(nEN)
Gọi d là UCLN(2n-1;8n-3)
=>2n-1 chia hết cho d và 8n-3 chia hết cho d
=>4.(2n-1) chia hết cho d và 8n-3 chia hết cho d
=>8n-4 chia hết cho d và 8n-3 chia hết cho d
=>8n-4-8n+3 chia hết cho d
=>-1 chia hết cho d =>d=1
=>điều phải chứng minh
Gọi d là ƯCLN(9n+5;2n+1)
Ta có 9n+5\(⋮\)d;2n+1\(⋮\)d
=>2*(9n+5)\(⋮\)d;9*(2n+1)\(⋮\)d
=>18n+10\(⋮\)d;18n+9\(⋮\)d
=>[(18n+10)-(18n+9)]\(⋮\)d
=>[18n+10-18n-9]\(⋮\)d
=>1\(⋮\)d
=>d=1
Vì ƯCLN(9n+5;2n+1)=1 Nên phân số \(\frac{9n+5}{2n+1}\) luôn là phân số tối giản(nEN*)
Đề phải là nEN* hoặc n>1
\(\frac{2n+1}{3n+2}\)
Gọi \(d\inƯC\left(2n+1;3n+2\right)\)
Ta có : \(2\left(3n+2\right)-3\left(2n+1\right)⋮d\)
\(\Leftrightarrow6n+4-6n+3⋮d\)
\(\Leftrightarrow1⋮d\Rightarrow d=\pm1\)
\(\frac{4n+1}{6n+1}\)
Gọi \(d\inƯC\left(4n+1;6n+1\right)\)
Ta có :
\(3\left(4n+1\right)-2\left(6n+1\right)⋮d\)
\(\Leftrightarrow12n+3-12n+2⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=\pm1\)
Gọi d là ƯCLN(2n+5;n+2)
Ta có 2n+5\(⋮\)d
n+2\(⋮\)d=>2*(n+2)\(⋮\)d=>2n+4\(⋮\)d
=>[(2n+5)-(2n+4)]\(⋮\)d
=>[2n+5-2n-4]\(⋮\)d
=>1\(⋮\)d
=>d=1
Vì ƯCLN(2n+5;n+2)=1 nên phân số \(\frac{2n+5}{n+2}\) luôn tối giản(nEN)