Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kiyoko Vũ
a, xét từng đoạn 1 , 1/2 ,1/2^3 ,1/2^4 ,1/2^5 ,1/2^6
ta có
1 = 1
1/2 + 1/3 < 1/2 + 1/2 = 1
1/4 + 1/5 + .. + 1/7 < 1/4 +..+ 1/4 = 4/4 = 1
1/8 + 1/9 + .. + 1/15 < 1/8 + .. + 1/8 = 8/8 = 1
tương tự
1/16 +1/17 + .. + 1/31 < 1
1/32 + 1/33 + .. + 1/63 < 1
=> cộng lại => A < 6
b, Câu hỏi của trịnh quỳnh trang - Toán lớp 6 - Học toán với OnlineMath
a) Giải
Đặt \(M=\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}...\dfrac{98}{99}\)
\(\Rightarrow A< A.M\)
hay \(A< \left(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{99}{100}\right).\left(\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}...\dfrac{98}{99}\right)\)
\(\Rightarrow A< \dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}.\dfrac{5}{6}.\dfrac{6}{7}...\dfrac{98}{99}.\dfrac{99}{100}\)
\(\Leftrightarrow A< \dfrac{1.2.3.4.5.6...98.99}{2.3.4.5.6.7...99.100}\)
\(\Rightarrow A< \dfrac{1}{100}< \dfrac{1}{10}\)
Vậy \(A< \dfrac{1}{10}\)
1/2^2=4
1/3^2<1/2.3
.................
1/100^2<1/99.100
A<1/4+1/2.3+...+1/99.100
A<1/4+1/2-1/100
A<1/4<3/4
Vậy A<3/4(dpcm).CHÚC BẠN HỌC TỐT!
Chứng minh rằng:
\(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+\(\dfrac{1}{4^2}\)+...+\(\dfrac{1}{100^2}\)<1
Ta có: 1/22 < 1/ 1.2
1/32 < 1/2.3
1/42 < 1/3.4
....
1/ 1002 < 1/ 99.100
Nên A< 1/1.2+1/2.3+...+1/99.100
= 1- 1/2+1/2 -1/3+1/3 -1/4+...+1/99-1/100
= 1- 1/100
<1 Vậy A><1. >
Ma 1 > 1/100
Vay…
\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}221+321+421+...+10021<1.21+2.31+3.41+...+99.1001
=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}< 1=1−21+21−31+31−41+...+991−1001=1−1001<1
Đặt \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\)
\(B=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\)
Ta có: \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< \)\(B=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\left(1\right)\)
Lại có: \(B=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}< 1\left(2\right)\). Từ \((1)\) và \((2)\) ta có:
\(A< B< 1\Leftrightarrow A< 1\) (Điều phải chứng minh)
Ta thấy:
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(........\)
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow\) Ta có:
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
Mà:
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
Vì: \(1-\frac{1}{100}< 1\)
Nên: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\) (Đpcm)
Ta thấy: \(\dfrac{1}{4^2}=\dfrac{1}{4.4}< \dfrac{1}{2.4}\)
\(\dfrac{1}{6^2}=\dfrac{1}{6.6}< \dfrac{1}{4.6}\)
...............
\(\dfrac{1}{100^2}=\dfrac{1}{100.100}< \dfrac{1}{98.100}\)
=> \(\dfrac{1}{4^2}+\dfrac{1}{6^2}+....+\dfrac{1}{100^2}\) < \(\dfrac{1}{2.4}+\dfrac{1}{4.6}+....+\dfrac{1}{98.100}\)
=> \(\dfrac{1}{4^2}+\dfrac{1}{6^2}+....+\dfrac{1}{100^2}\) < \(\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{100}\right)\)
=> \(\dfrac{1}{4^2}+\dfrac{1}{6^2}+....+\dfrac{1}{100^2}\) < \(\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{100}\right)=\dfrac{1}{2}.\dfrac{49}{100}\)\(=\dfrac{49}{200}\)
=> \(\dfrac{1}{2^2}\)+ \(\dfrac{1}{4^2}+\dfrac{1}{6^2}+....+\dfrac{1}{100^2}\) < \(\dfrac{1}{2^2}+\dfrac{49}{200}=\dfrac{99}{200}\)
do: \(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{99}{200}< \dfrac{100}{200}=\dfrac{1}{2}\)
=> \(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2}\)
Chúc bn học tốt nha
\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{2007^2}< \dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{2006.2007}\)
\(=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{2006}-\dfrac{1}{2007}\)
\(=\dfrac{1}{4}-\dfrac{1}{2007}< \dfrac{1}{4}\)
\(\Rightarrow\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{2007^2}< \dfrac{1}{4}\left(đpcm\right)\)
Vậy...
\(\left(1+\dfrac{1}{3}+\dfrac{1}{5}+.....+\dfrac{1}{99}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+.......+\dfrac{1}{100}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{99}+\dfrac{1}{100}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+.......+\dfrac{1}{100}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+.....+\dfrac{1}{100}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{100}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+.......+\dfrac{1}{100}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{100}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{50}\right)\)
\(=\dfrac{1}{51}+\dfrac{1}{52}+......+\dfrac{1}{100}\)
A=1/3^2+1/4^2+1/5^2+1/6^2+...+1/100^2<1/2-1/3+1/3-1/4+...+1/99-1/100
=>A<1/2-1/100<1/2