Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2^{16}+2^{17}+2^{18}+2^{19}\)
\(=2^{16}.\left(1+2+4+16\right)=2^{16}.23\)
Vậy A chia hết cho 23
Câu 1:
10^19+10^18+10^17
=10^17(10^2+10+1)
=10^17.111
=10^16.10.111
=10^16.1110 chia hết cho 555
suy ra 10^19+10^18+10^17 chia hết cho 555
a)(23)17-248
=251-248
=248.(23-1)
=(248.7)chia hết cho 7
c)=(33)13-(32)18
=339-336
=336.(33-1)
=336.26
=335.3.13.2
=(335.39.2)chia hết cho 39
cho tớ nha thanks
Ta thấy: 7 + 72 + 73 + 74 = 7 + 49 + 343 + 2401 = 2800 chia hết cho 202
P = 7 + 72 + 73 + ... + 72016 = ( 7 + 72 + 73 + 74) + 74( 7 + 72 + 73 + 74) + ... + 72012( 7 + 72 + 73 + 74)
P = 2800 + 74 . 2800 + ... + 72012 . 2800 = 2800( 1 + 74 + ... + 72012 )
Mà 2800 chia hết cho 202 \(\Rightarrow\) P chia hết cho 202
S = 17 . [ \(1+17+17^2\)] + \(17^3\left[1+17+17^2\right]\)+.......+\(^{17^5\left[1+17+17^3\right]}\)
S = 17 . 307 + 17^3 . 307 +....+ 17^5 .307
S= 307[ 17+17^3 +...+17^5] => S chia hết cho 307
Có tất cả số hạng ở biểu thức S là:
(18-1):1+1=18(số)
Vì 18 chia hết cho 3 nên ta chia biểu thức S làm 6 nhóm mỗi nhóm có 3 số hạng
S=17+17^2+17^3+.......+17^18
S=(17+17^2+17^3)+.......+(17^16+17^17+17^18)
S=17.(1+17+17^2)+........+17^16.(1+17+17^2)
S=17.307+.............+17^16.307
S=307.(17+........+17^16) chia hết cho 307
Vậy S chia hết cho 307
~shizadon~
Ta có : P = \(7^2+7^3+7^4+....+7^{2016}\)
chia hết cho 120 nên chia hết cho 20 nhé cm đi
A = 220 - 217 = 217(23 - 1) = 217.7 chia hết cho 7 (đpcm)